
Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Getting Started

In order to get started with making iOS apps, you need to download a
program called Xcode from the Mac App Store.

Xcode is what is known as an integrated development environment or IDE
for short.

Start a New Playground

Once you have Xcode installed and launched, you should see the following
welcome dialog:

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

If you don’t get this welcome dialogue, then you can always go up to the
“File” menu, go under “New,” and then choose “Playground.”

Click on “Get started with a playground.” The dialog that pops up allows
you to choose what type of playground you want to create

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Different Elements of the Playground

Here are the most important elements of the playground that you need to
focus on for now:

1. Code editor : this is where you’re going to be typing your Swift code.

2. Line numbers : these will help you refer to different lines of code.

If you don’t have line numbers and you want to enable them, then just go to Xcode > Preferences

> Text Editing > Line Numbers, and you can turn those line numbers on or off.

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

You’ll also notice that when you hover your mouse over the different lines,
a blue play icon follows. Clicking on the play icon executes the code
highlighted in blue on the left.

For example, if I hover over line 2 below and click play, Xcode will only run
the first line of code.

However, if I hover over line 4 and run it, then Xcode will run all the code
up to and including that point.

3. Status bar : tells you the current status of the playground.

If the status says that it is ready for you, Xcode is ready to accept your
code and run it.

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

4. Show/Hide Debug : allows you to hide or show the debug or console
area: the place where we’re going to be testing our Swift code.

5. Execute Playground : runs all the code in your playground

Holding down the play button gives you two options: “Automatically Run” and “Manually Run.”

The “Manually Run” mode means you need to click either click this play button or the blue play
icon to run your code.

“Automatically Run” means Xcode will automatically execute your playground and update the
results every time you edit the code.

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

A Swift Tour
Swift is a new programming language for iOS, macOS, watchOS, and tvOS
app development. Nonetheless, many parts of Swift will be familiar from
your experience of developing in C and Objective-C.

Constants and Variables
Constants and variables must be declared before they’re used.
You declare constants with the let keyword
You declare variables with the var keyword

let maximumNumberOfLoginAttempts = 10

var currentLoginAttempt = 0

Type Annotations
You can provide a type annotation when you declare a constant or variable
to be clear about the kind of values the constant or variable can store.

Write a type annotation by placing a colon after the constant or variable
name, followed by a space, followed by the name of the type to use.

var welcomeMessage: String

The colon in the declaration means “…of type…,”

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

You can define multiple related variables of the same type on a single line,
separated by commas.

var red, green, blue: Double

Naming Constants and Variables
Constant and variable names can contain almost any character, including
Unicode characters:

let π = 3.14159
let 你好 = "你好世界"

let 🐶🐮 = "dogcow"

Constant and variable names can’t contain whitespace characters,
mathematical symbols, arrows, private-use Unicode scalar values, or line-
and box-drawing characters.

Nor can they begin with a number, although numbers may be included
elsewhere within the name.

Once you’ve declared a constant or variable of a certain type, you can’t
declare it again with the same name, or change it to store values of a
different type.

Nor can you change a constant into a variable or a variable into a constant.

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

You can change the value of an existing variable to another value of a
compatible type.

var welcome = "Hello!"

welcome = "Bonjour!"

// welcome is now "Bonjour!"

Unlike a variable, the value of a constant can’t be changed after it’s set.

let language = "Swift"

language = "Java"

// This is a compile-time error: language cannot be changed.

Printing Constants and Variables
You can print the current value of a constant or variable with
the print(_:separator:terminator:) function:

var welcome = "Bonjour!"

print(welcome)

Swift uses string interpolation to include the name of variable as a
placeholder in a longer string, and replace it with the current value of that
variable.

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Wrap the name in parentheses and escape it with a backslash before the
opening parenthesis:

print("The current value of welcome is \(welcome)")

// Prints "The current value of welcome is Bonjour!"

Comments
Single-line comments begin with two forward-slashes (//):

// This is a comment

Multiline comments start with a forward-slash followed by an asterisk (/*)
and end with an asterisk followed by a forward-slash (*/):

/* This is also a comment

but is written over multiple lines. */

Semicolons
Swift doesn’t require you to write a semicolon (;) after each statement

Semicolons are required if you want to write multiple separate statements
on a single line:

let cat = "🐱"; print(cat)

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Data types
In Swift, there are several different types of data, but these are the most
common ones:

1. String – this is just text data. The name basically refers to having
a string of characters:

var aString = "This is a string"

2. Int – this is short for “integer.” This type represents whole numbers:
positive and negative.

var myInt = 108

var itemsInStock = -20

3. Float and Double – these two represent decimal numbers. The
difference is that Doubles have more precision than Floats, so they
can store longer decimal numbers.

let pi = 3.15159265359

4. Boolean – Swift shortens this to “Bool.” Booleans can only store
either “true” or “false”. They are perfect for when there are only one
of two options.

var isTVOn = true

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Integers
Integers are whole numbers with no fractional component.

Integers are either signed (positive, zero, or negative)
or unsigned (positive or zero).

Swift provides signed and unsigned integers in 8, 16, 32, and 64 bit forms

You can access the minimum and maximum values of each integer type
with its min and max properties:

let minValue = UInt8.min // minValue is equal to 0, and is of type UInt8

let maxValue = UInt8.max // maxValue is equal to 255, and is of type UInt8

Int

Swift provides an additional integer type, Int, which has the same size as
the current platform’s native word size:

• On a 32-bit platform, Int is the same size as Int32.

• On a 64-bit platform, Int is the same size as Int64.

UInt

Swift also provides an unsigned integer type, UInt,

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Floating-Point Numbers
Floating-point numbers are numbers with a fractional component, such
as 3.14159

Swift provides two signed floating-point number types:

• Double represents a 64-bit floating-point number.

• Float represents a 32-bit floating-point number.

Numeric Literals
Integer literals can be written as:

• A decimal number, with no prefix
• A binary number, with a 0b prefix
• An octal number, with a 0o prefix
• A hexadecimal number, with a 0x prefix

All of these integer literals have a decimal value of 17:

let decimalInteger = 17

let binaryInteger = 0b10001 // 17 in binary notation

let octalInteger = 0o21 // 17 in octal notation

let hexadecimalInteger = 0x11 // 17 in hexadecimal notation

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Floating-point literals can be decimal (with no prefix), or hexadecimal (with
a 0x prefix).

let decimalDouble = 12.1875

let exponentDouble = 1.21875e1

let hexadecimalDouble = 0xC.3p0

Numeric literals can contain extra formatting to make them easier to read

let paddedDouble = 000123.456

let oneMillion = 1_000_000

let justOverOneMillion = 1_000_000.000_000_1

Numeric Type Conversion
An Int8 variable can store numbers between -128 and 127, whereas
a UInt8 variable can store numbers between 0 and 255.

A number that won’t fit into a constant or variable of a sized integer type is
reported as an error when your code is compiled:

let x: UInt8 = -1

// UInt8 can't store negative numbers, and so this will report an error

let tooBig: Int8 = Int8.max + 1

// Int8 can't store a number larger than its maximum value,

// and so this will also report an error

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Integer Conversion
To convert one specific number type to another, you initialize a new
number of the desired type with the existing value

let twoThousand: UInt16 = 2_000

let one: UInt8 = 1

let twoThousandAndOne = twoThousand + UInt16(one)

Integer and Floating-Point Conversion
Conversions between integer and floating-point numeric types must be
made explicit:

let x = 3

let y = 0.14159

let z = Double(x) + y

// pi equals 3.14159, and is inferred to be of type Double

Floating-point to integer conversion must also be made explicit

let integerPi = Int(pi)

// integerPi equals 3, and is inferred to be of type Int

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Booleans
Boolean values are referred to as logical, because they can only ever be
true or false.

let orangesAreOrange = true

let logged_in = false

Type Aliases

Type aliases define an alternative name for an existing type.

You define type aliases with the typealias keyword.

typealias myType = UInt16

var x: myType

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Optionals
You use optionals in situations where a value may be absent.

An optional represents two possibilities: Either there is a value, or
there isn’t a value at all.

If you define an optional variable without providing a default value, the
variable is automatically set to nil for you:

var name: String?

// name is automatically set to nil

Here’s an example of how optionals can be used to cope with the absence
of a value. Swift’s Int type has an initializer which tries to convert
a String value into an Int value. However, not every string can be
converted into an integer. The string "123" can be converted into the
numeric value 123, but the string "hello, world" doesn’t have an obvious
numeric value to convert to.

The example below uses the initializer to try to convert a String into
an Int:

let possibleNumber = "123"

let convertedNumber = Int(possibleNumber)

// convertedNumber is inferred to be of type "Int?", or "optional Int"

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Because the initializer might fail, it returns an optional Int, rather than
an Int. An optional Int is written as Int?, not Int. The question mark
indicates that the value it contains is optional, meaning that it might
contain some Int value, or it might contain no value at all.

You set an optional variable to a valueless state by assigning it the special
value nil:

var serverResponseCode: Int? = 404

// serverResponseCode contains an actual Int value of 404

serverResponseCode = nil

// serverResponseCode now contains no value

If Statements and Forced Unwrapping
You can use an if statement to find out whether an optional contains a
value by comparing the optional against nil.

var x: Int? = 123

if x != nil {

print("x has an integer value of \(x!).")

}

// Prints "x has an integer value of 123."

Eng: Khalid Mohamed Mesbah
Tel: 01061085541

Optional Binding
Optional binding can be used with if and while statements to check for a
value inside an optional, and to extract that value into a variable.

Write an optional binding for an if statement as follows:

if let constantName = someOptional {

statements

}

This code can be read as:

let possibleNumber = "123"

if let actualNumber = Int(possibleNumber) {

print("\(actualNumber)")

} else {

print("The string couldn't be converted to an integer")

}

// Prints "123"

