NIE

AN Sy

ez 20
2

'm'
0s

?

/1 v

/

uu

IS
| ———=

l

N
\

L
N

1T T ——TTTE AN\

Cwvem—e \
118 SN\ \

NNz

<

_— NN S

\\\e. 1 ' I SSs NN\ ié\§$

“ 1z =M | = = ,/ §;

= % N

5 = = — R =

' L~ SN =l

||7= Zi%i!a SN S i1
Z

JORGE CASTILLO

ANDREI SHIKOV

Jetpack

Compose

Internals

Jetpack Compose and Android are trademarks of Google LLC
and this book is not endorsed by or affiliated with Google in any way.

Jetpack Compose internals

Jorge Castillo
This book is for sale at http://leanpub.com/composeinternals

This version was published on 2021-09-21

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and

many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2021 Jorge Castillo

http://leanpub.com/composeinternals
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!

Please help Jorge Castillo by spreading the word about this book on Twitter!
The suggested hashtag for this book is #composeinternals.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#composeinternals

http://twitter.com
https://twitter.com/search?q=%23composeinternals
https://twitter.com/search?q=%23composeinternals

This book is dedicated to all the people that helped along the way. I want to say thank you to Manuel
Vivo, Joe Birch, Antonio Leiva, Enrique Lopez-Marias, Andrei Shikov, Leland Richardson, and Chuck
Jazdzewski for reviewing parts of this book and providing very valuable feedback.

I don’t want to forget about Adam Powell either. Thanks Adam for answering more than a zillion
questions about the compiler and the runtime.

I also want to have a word for all the incredibly experienced developers that stop by the Jetpack
Compose channels from both Kotlinlang and the Android Study Group to discuss about the library.
keep learning a lot from all of you and you have helped to solve lots of doubts.

Of course, I want to give special thanks to the Google Jetpack Compose team for the incredible work
they are doing with the library, since I am convinced that it is going to be a game changer. Also for
embracing the book in such a nice way and even sending interesting proposals. Let’s keep the hype
up for a while :)

Special thanks and shout-out to Andrei Shikov, who wrote one of the chapters (probably the most
interesting one!). Thanks Andrei for making such a big effort to get your content ready for the pre-
release. I really appreciate your help, and I must say I have learned a ton from you.

I must give my thanks to Snapp Mobile (https://snappmobile.io/) and Snapp Automotive for their
proactiveness sponsoring the book and designing the book cover. Ana Silva is the designer behind it.
Outstanding work, we truly love it.

Finally, I really want to thank my wife, Maria Isabel, and my beloved baby, Julia, for giving me all
the strength and motivation to face such a complicated challenge during these specially hard times
we are all living. Having a family like the one I have is like having a superpower. I am so lucky to
have you. I love you both.

Contents

Prelude 1
Why toread thisbook 1
What this book isnotabout 1
What this book isabout 1
Keep the sourcesclose 2
Code snippets and examples 2

1. Composable functions 3
The nature of Composable functions 3
Composable function properties 5
Calling context e 5
Idempotent. 6
Freeof sideeffects 7
Restartable 10
Fastexecution e 10
Positional memoization 11
Similarities with suspend functions o o o 14
Composable functions are colored 15
Composable function types e 17

2. The Compose compiler 19
A Kotlin compiler plugin 19
Compose annotations 20
Registering Compiler extensions 26
Kotlin Compiler version 27
Staticanalysis 27
Static Checkers 28
Callchecks o 28
Typechecks 30
Declaration checks 30
Diagnostic SUppression 31
Runtime version check 33
Code generation 33

The Kotlin IR 33

CONTENTS

Lowering e 34
Inferring class stability 35
Enabling live literals 38
Compose lambda memoization 39
Injecting the Composer 42
Comparison propagation 44
Default parameters 46
Control flow group generation 46
Klib and decoy generation 51
3. The Compose runtime 52
The slot table and the listof changes 53
Theslottableindepth 53
Thelistof changes 56
The Composer. 57
Feeding the Composer e 57
Modeling the Changes 59
Optimizing when to write 60
Writing and reading groups 60
Remembering values 61
Recompose scopes 61
SideEffects in the Composer e 62
Storing CompositionLocals 63
Storing source information 63
Linking Compositions via CompositionContext 63
Accessing the current State snapshot o 63
Navigating thenodes 64
Keeping reader and writerinsync 64
Applying the changes 64
Performance when building the nodetree, 65
How changes are applied 67
Attaching and drawing thenodes 68
Composition e 70
Creating a Composition 70
The initial Composition process 73
Applying changes after initial Composition 74
Additional information about the Composition 75
The Recomposer 75
Spawning the Recomposer 75
Recomposition process 79
Concurrent recomposition L L 80

Recomposer states 81

CONTENTS

4. Compose UL e 82
5. State snapshot system 83
What snapshot stateis 83
Concurrency control Systems 85
Multiversion concurrency control MCCor MVCC) 86
The Snapshot 87
The snapshottree 90
Snapshots and threading 91
Observing readsand writes. 91
MutableSnapshots 93
GlobalSnapshot and nested snapshots 96
StateObjects and StateRecords 97
Reading and writing state 101
Removing or reusing obsolete records 103
Change propagation e 104
Merging write conflicts 106
6. Smart Recomposition 109
7. Effects and effecthandlers 110
Introducing side effects L 110
Side effects in Compose L 111
What weneed 113
Effect Handlers 113
Non suspended effects 114
Suspended effects L 117
Third party library adapters 119
8. The Composable lifecycle 122
9. Advanced Compose Runtime usecases 123
Compose runtime vs Compose UL L o 123
Composition of vector graphics 124
Building vector image tree 126
Integrating vector composition into Compose Ul 130
Managing DOM with Compose 133
Standalone composition in the browser L. 136

Conclusion e 139

Prelude

Why to read this book

Jetpack Compose will become the “de facto” standard for UI in the Android platform sooner than
later, and even if lots of apps will still use the View system, new screens will be coded using Compose
instead, so it will become an unavoidable thing to learn. My strong suggestion is to dedicate some
time to learn about its internals in-depth, since that will yield powerful skills to write modern and
efficient Android apps.

In the other hand, if you are interested in other use cases of Jetpack Compose rather than Android,
you’ll likely be very happy to know that this book has got you covered also. Jetpack Compose
internals is very focused on the compiler and runtime details, making the overall experience very
agnostic of the target platform. Having an Android background should not be a requirement for
reading the book. The book also provides a chapter dedicated to diverse use cases for Jetpack
Compose, which exposes a few really interesting examples over code.

What this book is not about

This book does not try to replicate the Jetpack Compose official documentation, which is quite good
already and the source of truth for any newcomers to the library. For that reason you will not find
listings or catalogues with all the existing components or apis that the library provides in the book.

If learning Compose is what you are looking for, I'd recommend you to go ahead and subscribe to
the “Practical Jetpack Compose” by Joe Birch'. Joe’s book is full of interesting examples and detailed
explanations about all the relevant use cases of Jetpack Compose. That is a highly valuable reference
book to have on your desk if you are an Android developer. The book is still under work, but will
be released later this year.

What this book is about

This books heavily focuses on the internals of Jetpack Compose. As an Android developer and over
the years, I have grown a feeling of how astoundingly important can become to learn about internals
of the platform you work with every day. That helps me a lot to understand what code I want to write.
Having that type of knowledge allows me to write performant code that complies to the platform
expectations instead of going against them, and allows me to understand why things work the way

'https://compose.academy/practicaljetpackcompose

https://compose.academy/practicaljetpackcompose
https://compose.academy/practicaljetpackcompose

Prelude 2

they do. To me, this is probably one of the biggest differences between non very experienced and
experienced Android developers.

For many years we have all been diving into lower aspects of the platform like layout and draw
passes, drawing efficiency, internals of the View system, styles and themes, lifecycles, and much
more. This book is an opportunity to do the same but for Jetpack Compose, and open your mind in
terms of how to think about it, given how important it is going to become for the years to come. My
personal goal as the author of this book is to give you all the tools to achieve a big leap on this field.

Keep the sources close

If you ask me, I'd say that reading sources is one of the greatest skills we can acquire as software
developers, let those be written by us, by our teammates or be part of any external libraries or
languages. I strongly recommend anyone reading this book to keep the sources as close as possible
while reading it, and explore even further. You can find everything in cs.android.com?®. Sources are
also indexed in any Android Studio versions supporting Compose, so you should be able to navigate
those. Having a playground project with Compose around is also desirable.

Code snippets and examples

One of the things we learn in this book is that Jetpack Compose can be used not only to represent
UI trees but any large call graphs with generic node types. Still some of the code snippets and
examples you’ll find in the book will be UI oriented for easier mental mapping, since that is what
most developers are used to at this point. That said, this book includes a lesson that goes deep into
how to use Jetpack Compose for diverse use cases, so that chapter contains snippets and examples
that are not necessarily related to Android UL

Welcome to Jetpack Compose Internals. Grab a coffee, and enjoy your read.

Jorge.

*https://cs.android.com/

https://cs.android.com/
https://cs.android.com/

Bw N

1. Composable functions

The nature of Composable functions

Probably the most indicate way to start a book about Jetpack Compose internals would be learning
about Composable functions, given those are the atomic building blocks of Jetpack Compose, and the
construct we will use to write our composable trees. I intentionally say “trees” here, since composable
functions can be understood as nodes in a larger tree that the Compose runtime will be able to
represent in memory. We will get to this in detail when the time comes, but it is good to start
growing the correct mindset from the very beginning.

If we focus on plain syntax, any standard Kotlin function can become a Composable function just
by annotating it as @omposable:

NamePlate kt

@Composable
fun NamePlate(name: String) {

// Our composable code

}

By doing this we are essentially telling the compiler that the function intents to convert data into a
node to register in the composable tree. That is, if we read a Composable function as @Composable
(Input) -> Unit, the Input would be the data, and the output (Unit) would not be a value returned
from the function as most people would think, but an action registered to add the element to the
in-memory representation of the composable tree.

Note how returning Unit from a function that takes an input means we are likely consuming that
input somehow within the body of the function.

The described action is called “emitting” in the Compose jargon. It represents a scheduled change to
the node tree. Composable functions emit when executed, and that happens during the Composition.
We will get to that when we learn about the Jetpack Compose runtime in the following chapters.

g b W N =

1. Composable functions 4

runs emits

Composition

—
4 @Composable fun A(data): Unit @ —
—

Composable function emits image

But not all Composable functions return Unit though. Some of them return a value, and that changes
their meaning. We could say that those are not “consuming” input, but “providing” a value something
based on their input. One example of this can be remember.

Remember kt

Composable

fun NamePlate() {
val name = remember { generateName() }
Text(name)

The remember Composable function allows to memoize the result of an operation and also return it.
Yet, whenever this function executes, the in-memory representation of the tree will be updated with
the relevant information from the call. That will include the call itself and its result. The ultimate
takeout of this is to keep the in-memory representation of the tree always up to date with the
structure and relevant information of our call graph.

There are other relevant implications of annotating a function as Composable. The @Composable
annotation effectively changes the type of the function or expression that it is applied to, and
imposes some constraints or properties over it. These properties are very relevant to Jetpack Compose
since they will unlock the library capabilities.

The Compose runtime expects composable functions to comply to the mentioned properties, so
it can assume certain behaviors and therefore exploit different runtime optimizations like parallel
composition, arbitrary order of composition based on priorities, smart recomposition, or positional
memoization among others. But please, don’t feel overwhelmed about all these new concepts yet,
we will dive into every single one in depth at the right time.

Generically speaking, runtime optimizations are only possible when a runtime can have some
certainties about the code it needs to run, so it can assume specific conditions and behaviors from
it. This unlocks the chance to execute, or in other words “consume” this code following different
execution strategies or evaluation techniques that take advantage of the mentioned certainties.

An example of these certainties could be the relation between the different elements in code. Are they
dependant on each other or not? Can we run them in parallel or different order without affecting

= O O b W N~

O 00 I O O b W N =~

1. Composable functions 5

the program result? Can we interpret each atomic piece of logic as a completely isolated unit?

Composable function properties

Let’s learn about the properties of Composable functions.

Calling context

Any function that is annotated as @Composable gets translated by the Jetpack Compose compiler to
a function that implicitly gets passed an instance of a Composer context as a parameter, and that
also forwards that instance to its Composable children. We could think of it as an injected implicit
parameter that the runtime and the developer can remain agnostic of.

It looks something like this. Let’s say we have the following composable to represent a nameplate:

NamePlate kt

@Composable
fun NamePlate(name: String, lastname: String) {
Column(modifier = Modifier.padding(16.dp)) {
Text(text = name)
Text(text = lastname, style = MaterialTheme.typography.subtitlel)

The compiler will add an implicit Composable parameter to each Composable call on the tree, plus
some markers to the start and end of each composable. Note that the following code is simplified,
but the result will be something like this:

NamePlate after compiler processing.

fun NamePlate(name: String, lastname: String, $composer: Composer<*>) {
$composer .start(123)
Column(modifier = Modifier.padding(16.dp), $composer) ({
Text(
text = name,
$composer
)
Text(
text = lastname,

10
11
12
13
14
15

1. Composable functions 6

style = MaterialTheme.typography.subtitlel,
$composer
)
}

$composer .end()

This gets the Composer context forwarded down the tree, so it will always be available at any level
given the tree is conformed of Composable functions only. The compiler will make sure of this
by imposing a very strict rule: Composable functions can only be called from other Composable
functions. In other words, that will be the required calling context.

By imposing this requirement, Jetpack Compose can ensure that the required information for the
runtime is always accessible by any subtree. In the previous section we learned how Composable
functions emit changes to the tree instead of yielding actual UL The Composable will use the injected
Composer instance to emit those changes during composition, and further recompositions will depend
on the changes emitted by previous executions of the function. This is the connection between the
production code we write as developers and the Compose runtime. This connection gives us the
ability to inform the runtime about the shape of the tree so it can build its in memory representation
of it and perform its magic.

Don’t worry much if you don’t get this completey yet. This is something that will gradually
become more clear in the lessons to come. For now, we can keep an idea of a declarative DSL (e.g:
Compose UI) that we can use to emit actions to add, remove, or replace nodes to/from an in-memory
representation of the composable tree. That representation can be used as a reference to materialize
complete Uls later on.

Idempotent

Another property that Composable functions have is that they are expected to be idempotent
regarding the program state. This means that we could call a Composable function a thousand times
providing the same input data to it and it would always yield (emit) the same program state.

The Jetpack Compose runtime relies on this assumption for things like recomposition. This book has
a chapter dedicated to that, but we can have a sneak peek to showcase the point here.

In Jetpack Compose, recomposition is the action of calling Composable functions again when the
data they depend on varies, so they can emit updated elements. If we translate that to UI, the function

1. Composable functions 7

could emit an updated or new node to the UI tree.

Recomposition can happen for different reasons in Compose, and a function might get recomposed
multiple times. That is why it is so important that Composable functions are idempotent. Otherwise
we would be altering program state as a side effect of every recomposition.

Recomposition is a vertical task that traverses down the tree checking which nodes need to be
recomposed. When we refer to “smart recomposition”, what we mean is that the parts of the
Composable tree that do not depend on the varied data can remain unchanged, so they are not
recomposed. This is a big leap in terms of efficiency, since it means that those Composable lambdas
are not called again. If we think twice about this we will notice that this is only possible because the
state yielded by those functions is already stored and available in memory, and can be reused as is
when their input has not varied. This is precisely a direct consequence of being idempotent.

If our Composable functions would not yield the same program state for the same inputs every time,
the runtime could never make that assumption and take any shortcuts in that matter. And this leads
us directly to the next property.

Free of side effects

You might have heard the terms “pure functions” or “purity” before. This is very related to that. Pure
functions are functions that don’t contain side effects.

Let’s understand “side effect” as any action that escapes the scope of the function to do something
unexpected on the side. In the context of Jetpack Compose, a side effect could be a change to the
state of the app that happens outside of the scope of a Composable function. In broader terms, things
like setting a global variable, updating a memory cache, or making a network query could also be
considered side effects. What would happen if the network query fails? Or if the external cache
gets updated between different executions of the function? The behavior of our function depends on
those things. A side effect is indeed a source of ambiguity and makes the function non-deterministic.
Side effects often lead to race conditions in programs.

As you probably imagined already, the fact that a Composable function is idempotent also implies
that the function must not run any uncontrolled side effects. Otherwise it could yield a different
program state on every execution (i.e: composition), making it not idempotent. This effectively
makes both properties really tied together.

Allowing side effects would also imply that a Composable function might become dependant on the
result of the execution of a previous Composable function. That must be avoided at all cost, since
the runtime expects Composable functions to be able to execute in any order and even in parallel.

O O B W N

0 I O O b W N =~

1. Composable functions 8

That allows offloading recomposition to different threads and take advantage of multiple cores, for
example.

MainScreen .kt

@Composable

fun MainScreen() {
Header ()
ProfileDetail()
EventList()

The Header, ProfileDetail and EventList Composables might be executed in any order, so we can’t
assume they’ll resolve sequentially.

In this sense, we shouldn’t ever try to take advantage of an assumed order of composition to create
logics based on that. One example of this could be to update a state from ProfileDetail with the
intention to trigger a new effect on EventList in response. What would happen if EventList runs
before or at the same time than ProfileDetail?. Another example could be setting a global variable
from Header and reading it from EventlList. What should the program do if we swap the order? Any
relation we can establish between Composables via side effects of the composition is likely wrong
and should be avoided. If we need to write business logic, that is not the responsibility of one or
multiple Composable functions, and should probably be delegated on a different architecture layer.

Compose has the ability to reorder composition based on priorities. One example is assigning lower
priority to composables that are not on screen, in case we are using Jetpack Compose to represent
UL

Another consequence of running side effects directly from a Composable function is that those
could get called multiple times as a side effect of recomposition. That is too risky since it potentially
compromises the integrity of our code and our application state, and creates race conditions. Imagine
a Composable function that needs to fill up its state with data loaded from network:

EventsFeed.kt

@Composable
fun EventsFeed(networkService: EventsNetworkService) ({
val events = networkService.loadAllEvents()

LazyColumn {
items(events) { event ->
Text(text = event.name)

10

O© 00 1 O O b W N =

[=N
w N =~ O

1. Composable functions 9

The effect here will get fired again for every recomposition, and we might end up with lots of effects
taking place at the same time without any sort of control or coordination between them, only because
the runtime might require to recompose this Composable many times in a very short period of time.

But given side effects are required to write stateful programs, Jetpack Compose offers mechanisms
to safely call effects from Composable functions by making them aware of the Composable lifecycle,
so one can span a job across recompositions for example. Those are called effect handlers, and we
will cover them in further chapters. For now, we can understand them as a safe environment to run
our side effects so we avoid calling them directly in the Composable’s body.

Another example of an issue that occurs when we run side effects in a Composable without any
sort of control could be a composable updating some external variable holding a state. Since the
function can potentially run from different threads, accessing that variable automatically becomes
not thread-safe. Here is an example:

BuggyEventFeed .kt

@Composable
fun BuggyEventFeed(events: List<Event>) {
var totalEvents = 0

Column {
Text(if (totalEvents == Q) "No events." else "Total events $totalEvents")

events. forkEach { event ->
Text("Item: ${event.name}")
totalEvents++ // [

Here, totalEvents gets modified every time the Column composable gets recomposed. That means
the total count will likely not match and it’s open to race conditions.

Something interesting to realize as a final thought is how “free of side effects” is a requirement
focused on the code the user writes. But truth is that building or updating Composition is actually
a side effect of executing the Composable call graph. But this one is accepted (and required)
structurally, since it unlocks the capabilities of the library, and it will not imply inconsistencies
on our program behavior in any way.

1. Composable functions 10

Restartable

Composable functions are also expected to be restartable, which is something you have probably
heard of or read somewhere else already. To clarify this property, this is just the same thing we
have described in the previous sections. Composable functions can recompose, and therefore they
are not like standard functions in a function chain, in the sense that they will not be called only once.
Recomposing a Composable function means executing it again.

Compose gives Composable functions the ability to recompose at any point in time, and only when
required, so it can be selective about which nodes of the call graph to recompose, or in other words,
restart. This is essentially a reactive approach where our functions can be re-executed based on
changes in the state they are observing.

All composable functions are restartable by default, since that is what the Compose runtime expects.
Still, the runtime offers an annotation called NonRestartableComposable that can be used to remove
this ability from a Composable function, so the compiler does not generate the required boilerplate
needed to allow the function to recompose or be skipped.

Please keep in mind that this has to be used very sparingly, since it might only make sense for very
small functions that are likely getting recomposed (restarted) by another Composable function that
calls them, since they might contain very little logic so it doesn’t make much sense for them to self
invalidate. Their invalidation / recomposition will be essentially driven by their parent/enclosing
Composable.

We will cover this in detail in chapter 2.

Fast execution

Composable functions are expected to be fast, since they can be called multiple times. That is why
they are designed to emit node changes to the Composable tree, instead of materializing actual Ul
right away. A Composable function could be called for every frame of an animation, for example.
Any cost heavy computations should be offloaded to coroutines and always be wrapped into one
of the lifecycle aware effect handlers that we will learn about ahead in this book. Making side
effects lifecycle aware and suspended is the way Jetpack Compose compiler can ensure we use them
correctly, and in coordination with what the Compose runtime expects.

We can think of Composable functions and the Composable function tree as a fast, declarative,
and lightweight approach to write a description of a program that will be retained in memory and
interpreted / materialized later on.

O U kW N

1. Composable functions 11

Positional memoization

To understand this property we probably need to learn about “function memoization” first. Function
memoization is the ability of a function to cache its result based on its inputs, so it does not need
to be computed again every time the function is called for the same inputs. As we explained above,
that is only possible for pure (deterministic) functions, since we have the certainty that they will
always return the same result for the same inputs, hence we can save it and reuse it.

Function memoization is a technique widely known in the world of Functional Programming, where
programs are defined as a composition of pure functions and therefore memoizing the result of those
functions can imply a big leap in performance.

Positional memoization is based on this idea but with a key difference. Composable functions have
constant knowledge about their location on the Composable tree. The runtime will differentiate
calls to the same Composable function by providing them an identity that is unique within the parent.
This identity is generated based on the position of the Composable function call, among other things.
That way the runtime can differenciate the three calls to the Text () Composable function here:

MyComposable.kt

@Composable

fun MyComposable() {
Text("Hello!™)
Text("Hello!")
Text("Hello!")

}

Those three are calls to the same Text composable, and they have the same inputs (none, in this
case). But they are done from different places within the parent, hence the Composition will get
three different instances of it, each one with a different identity.

This identity is preserved over recompositions, so the runtime can appeal to the Composition to
check whether a Composable was called previously or not, or whether it has changed.

Sometimes generating that identity can be hard for the runtime, since it relies on the call position
in the sources. There are cases where that position will be the same for multiple calls to the same
Composable, and still represent different nodes. One example is lists of Composables generated from
a loop:

0w I O O B wWw N =

O© 00 I O O b W N =~

N
(N

1. Composable functions 12

TalksScreen.kt

@Composable
fun TalksScreen(talks: List<Talk>) {
Column {
for (talk in talks) {
Talk(talk)

Here, Talk(talk) is called from the same position every time, but each talk is expected to be different.
In cases like this, the Compose runtime relies on the order of calls to generate the unique id and still
be able to differentiate them. This works nicely when adding a new element to the end of the list,
since the rest of calls stay in the same position they where before. But what if we add elements to the
top, or the middle? The runtime will recompose all the Talks below that point since they changed
their position, even if their inputs have not changed. This is inefficient and could lead to unexpected
issues.

In these cases, the runtime provides the key Composable so we can assign an explicit key to the call
manually.

TalksScreenWithKeys.kt

@Composable
fun TalksScreen(talks: List<Talk>) {
Column {
for (talk in talks) {
key(talk.id) { // Unique key
Talk(talk)

This way we can associate each call to Talk () with a talk id, which will likely be unique, and this will
allow the Composition to preserve identity of all the items on the list regardless of them changing
positions.

When we say that a Composable function “emits a node to the Composition”, all the information
regarding the Composable call is stored, including their parameters, their inner Composable calls,
the result of their remember calls, and any other relevant information. This is done via the injected
Composer instance

Given Composable functions know about their location, any value cached by those will be cached
only in the context delimited by that location. Here is an example for more clarity:

© 00 N O O & W N =

.
(N

1. Composable functions 13

FilteredImage.kt

@Composable

fun FilteredImage(path: String) {
val filters = remember { computeFilters(path) }
ImageWithFiltersApplied(filters)

@Composable
fun ImageWithFiltersApplied(filters: List<Filter>) {
TODO()

Here we use remember to cache the result of a heavy operation to precompute the filters of an image
given its path. Once we compute them, we can render the image with the already computed filters.
Caching the result of the precomputation is desirable. The key for indexing the cached value will be
based on the call position in the sources, and also the function input, which in this case is the file
path.

The remember function is a Composable function that knows how to read from the slot table in order
to get its result. When the function is called it will look for the function call on the table, and return
the cached result when available. Otherwise it will compute it and store the result before returning
it, so it can be retrieved later.

In Jetpack Compose, memoization is not the traditional “application-wide” memoization. Here,
remember leverages positional memoization to get the cached value from the context delimited by
the Composable calling it: FilteredImage. Meaning that it goes to the table and looks for the value
in the range of slots where the information for this Composable is expected to be stored. This makes
it more like a singleton within that scope, since it will compute the value only during the initial
composition, but for each recomposition it will retrieve the cached value. But if the same Composable
was used in a different composition, or the same function call was remembered from a different
composable, the remembered value would be a different instance.

Compose is built on top of the concept of positional memoization, since that is what smart
recomposition is based on. The remember Composable function simply makes use of it explicitly
for more granular control.

This post by Leland Richardson® from the Jetpack Compose team at Google explains positional

https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose-part-2-of-2-37b2c20c6cdd

1. Composable functions 14

memoization really well and brings in some visual graphics that might come very handy.

https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose- part-2-of-2-37b2c20c6cdd

Similarities with suspend functions

The moment where I described the requirement of a calling context for Composable functions might
have raised some eyebrows, since it might remind to another language primitive available in Kotlin:
suspend functions.

If you are familiar with the language you will likely know that suspend functions also have a
requirement of a calling context: They can only be called from another suspend function. The Kotlin
compiler imposes this rule, so it can replace all the suspend functions in the chain by new copies of
those that forward an implicit parameter to every level. Sounds familiar, right? The only difference
is that in this case, the implicit parameter is a Continuation.

Here is an example. A code like the following:

PublishTweet.kt
suspend fun publishTweet(tweet: Tweet): Post = ...

Is replaced by the Kotlin compiler with:

PublishTweet after compiler processing.

fun publishTweet(tweet: Tweet, callback: Continuation<Post>): Unit

The Continuation is added by the compiler and forwarded to all suspend calls. It carries all the
information that the Kotlin runtime needs to suspend and resume execution from the different
suspension points at will.

This makes suspend a very good example of how imposing a calling context can serve as a means
for carrying implicit information across the execution tree. Information that can be used later at
runtime to leverage more advanced language features like in this case.

In this sense, we could also understand @Composable as a language feature.

A fair question that might arise at this point is why Jetpack Compose team didn’t use suspend for
achieving their wanted behavior. Well, even if both features are really similar in the pattern they
implement, both are unlocking completely different behaviors in the language.

The Continuation interface is very specific about the use case it solves, which is suspending
and resuming execution, so it is modeled as a callback interface and Kotlin generates a default
implementation for it with all the required machinery to do the jumps, coordinate the different

https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose-part-2-of-2-37b2c20c6cdd

1. Composable functions 15

suspension points, share data between them, and so on. The Compose use case is different, since its
goal is to create an in memory representation of a large call graph that can be optimized at runtime
in different ways.

Would it be possible to encode the Compose behaviors using a custom implementation for the
Continuation? That is probably something that only the Compose creators can answer at this
point, but their only need is to impose a calling context, not much encoding control flow, which
is ultimately what a Continuation is.

Once we understand the similarities between Composable and suspend functions, it can be
interesting to reflect a bit on the idea of “function coloring”.

Composable functions are colored

Composable functions have different capabilities and properties than standard functions, as we
have learned in this lesson. They have a different type, and model a very specific concern. This
differentiation can be understood as a form of “function coloring”, since somehow they represent a
separate category of functions.

“Function coloring” is a concept explained by Bob Nystrom from the Dart team at Google in a
blockpost called “What color is your function?” from 2015. He explained how async functions and
sync functions don’t compose well together, since it’s not possible to call async functions from sync
ones unless you make the latter also async, or provide an awaiting mechanism so you can call async
functions transparently and await their result. This is why Promises and async/await were brought
to the table by some libraries and languages. It was a try to get composition back.

In Kotlin there is suspend which kind of tackles this issue, but it is still colored. We can only call
suspend functions from suspend functions, since they require a very specific context to run. ~The
Continuation-—.

Regardless of whether these things fixed the issue or not, this happens for a reason: We are modeling
two very differentiated categories of functions here. Two categories that represent concepts of a very
different nature. It’s like speaking two different languages. Combining them is not going to turn out
great most of the time. We have operations that are meant to calculate an immediate result (sync),
and operations that unfold over time and eventually provide a result (async), which will likely take
longer to resolve. That is why we frequently use the latter for things that take some time, like reading
from files, writing to databases, or querying network services.

Back to the case of Composable functions, they represent restartable and memoizable functions that
map immutable data to nodes in a tree, as we described above. And the Compose runtime depends
on this fact. This is why the compiler enforces Composable functions to only be called from other
Composable functions. This restriction is used to ensure a calling context that unlocks and drives
the Composition. We will dive deep into this pretty soon.

© 00 N O O b W N =

[==Y
w N =~

1. Composable functions 16

But we have learned that the underlying problem of function coloring comes from the fact that you
can’t transparently compose functions with different colors together. Is that the case for Compose?
Well, it’s actually not. Composable functions are not expected to be called from non composable
ones, since the way Compose is used is building a graph out of Composable functions only. They
are our atomic unit of composition in this DSL we are using to build our tree. Composable functions
are not thought to write program logics neither compose with standard functions.

You might have noticed that I am tricking a bit here. One of the benefits of Composable functions
is that you can declare UI using logics, precisely. That means sometimes we might need to call a
Composable function from a standard Kotlin function. For example:

SpeakerList.kt

@Composable
fun SpeakerlList(speakers: List<Speaker>) ({
Column {
speakers. forEach {
Speaker(it)
}

@Composable
fun Speaker (speaker: Speaker) {
Text(speaker .name)

}

Here we are calling the Speaker Composable from the forEach lambda, and the compiler does not
complain. How is it possible to mix function colors this way then?

The reason is inline. Collection operations are all flagged as inline so they essentially inline their
lambdas into their callers making it effectively as if there was no indirection. In the above example,
the Speaker Composable call is inlined within the SpeakerList body, and that is allowed given both
are Composable functions.

So, by leveraging inline in the APIs we can avoid the problem of function coloring to write the logic
of our Composables, while the Composable functions themselves still remain colored by enforcing
a calling context. Also note that the type of logic expected in a composable usually comes in the
form of conditional logic to replace Composables depending on certain conditions (usually some
state that has varied or a parameter). These are the big majority of the time simple logics that can
usually be written inline, or pulled out to inline functions if needed.

Once we understand that Composable functions have a color, we can also understand how that
makes them necessarily be a different category of functions, and we are ready to learn how
this allows the Jetpack Compose compiler to treat them differently and therefore leverage their

© 00 N O O b W N =

T = =N =N
0 N O O b W N =~ O

1. Composable functions 17

capabilities due to the assumptions it can make about how they behave, and from what contexts
they can be called.

As a recap of this section, and in generic terms, let’s simply remember that imposing constraints is
essentially what types do, and this is ultimately done to aid the compiler and the runtime.

I definitely recommend reading these two posts about function coloring, since there are lots of highly
valuable language design insights in there.

Here you have Bob Nystrom’s post? and this is the one from Roman Elizarov?®.

*https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
"https://elizarov.medium.com/how-do-you-color-your-functions-a6bb423d936d

Composable function types

Something we have already learned is that the @Composable annotation effectively changes the
type of the function at compile time. To be more specific, Composable functions comply to the
@Composable (T) -> Unit function type, where T would be the input data, and Unit reflects that
the function must consume the input and emit a change to the tree. Developers can use that type to
declare Composable lambdas as one would declare any standard lambda in Kotlin.

Composable Function Types.kt

// This can be reused from any Composable tree
val textComposable: @Composable (String) -> Unit = {

Text(
text = it,
style = MaterialTheme.typography.subtitlel
)
}
@Composable

fun NamePlate(name: String, lastname: String) {
Column(modifier = Modifier.padding(16.dp)) {
Text(
text = name,
style = MaterialTheme. typography.h6
)

textComposable(lastname)

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://elizarov.medium.com/how-do-you-color-your-functions-a6bb423d936d
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://elizarov.medium.com/how-do-you-color-your-functions-a6bb423d936d

© 00 N O O b W N =

NN
=

1. Composable functions 18

Composable functions can also comply to @Composable Scope.() -> Unit when we need a lambda
with receiver, which is the style frequently used to leverage the Composable DSL to be able to nest
Composables. In these cases the scope usually carries information like modifiers or variables relevant
to the Composable that can be read within the block.

Box .kt

inline fun Box(
content: @Composable BoxScope.() -> Unit
) |
/S
Layout(
content = { BoxScopelnstance.content() },
measurePolicy = measurePolicy,

modifier = modifier

At the same time, we have learned about the restrictions and properties that the Compose compiler
imposes to Composable functions. Those requirements could also be understood as part of the type
definition itself somehow, since at the end of the day types exist to refine data and impose properties
and limitations over it so compilers can statically check those. Types provide additional information
to the compiler, which is precisely what the Composable annotation does.

The requirements of Composable functions are checked by the Compose compiler sometimes even
while we are still writing the code. The compiler has call, type, and declaration checkers in place to
ensure the required calling context, guarantee idempotence, disallow uncontrolled side effects, and
much more. Those checkers run in the frontend phase of the Kotlin compiler, which is the phase that
is traditionally used for static analysis and has the faster possible feedback loop. The library aims to
provide a guided experience to developers, lead by its consciously designed public APIs and static

checks.

2. The Compose compiler

Jetpack Compose is comprised of a series of libraries, but this book is going to heavily focus on three
specific ones: The Compose compiler, the Compose runtime, and Compose UL

The Compose compiler and the runtime are the pillars of Jetpack Compose. Compose UI is not
technically part of the Compose architecture, since the runtime and the compiler are designed to
be generic and consumed by any client libraries that comply to their requirements. Compose Ul
only happens to be one of the available clients. There are also other client libraries in the works,
like the ones for desktop and web by JetBrains. That said, going over Compose UI will help us to
understand how Compose feeds the runtime in-memory representation of the Composable tree, and
how it eventually materializes real elements from it.

compose architecture

In a first approach to Compose one might feel a bit confused about what’s the exact order of things.
Up to this point in the book we’ve been told that the compiler and the runtime work together to
unlock all the library features, but that probably still remains a bit too abstract if we are not familiar
with it already. We’d likely welcome deeper explanations on what actions the Compose compiler
takes to make our code comply with the runtime requirements, how the runtime works, when initial
composition and further recompositions are triggered, how the in-memory representation of the
tree is feeded, how that information is used for further recompositions... and much more. Grasping
concepts like these can help us to grow an overall sense on how the library works and what to expect
from it while we are coding.

Let’s go for it, and let’s start by understanding the compiler.

A Kotlin compiler plugin

Jetpack Compose relies a bit on code generation. In the world of Kotlin and the JVM, the usual way
to go for this is annotation processors via kapt, but Jetpack Compose is different. The Compose
compiler is actually a Kotlin compiler plugin instead. This gives the library the ability to embed
its compile time work within the Kotlin compilation phases, gaining access to more relevant

2. The Compose compiler 20

information about the shape of code, and speeding up the overall process. While kapt needs to run
prior to compilation, a compiler plugin is directly inlined in the compilation process.

Being a Kotlin compiler plugin also gives the chance to report diagnostics in the frontent phase of
the compiler, providing a very fast feedback loop. However, these diagnostics will not get reported
in the IDE, since IDEA is not directly integrated with the plugin. Any IDEA-level inspections we
can find in Compose today have been added via a separate IDEA plugin which doesn’t share any
code with the Compose compiler plugin. That said, frontend diagnostics will be reported as soon as
we hit the compile button. Improving the feedback loop is the ultimate benefit of static analysis in
the frontend phase of a Kotlin compiler, and the Jetpack Compose compiler makes good use of that.

Another big advantage of Kotlin compiler plugins is that they can tweak the existing sources at
will (not only add new code, like annotation processors do). They are able to modify the output
IR for those elements before it gets lowered to more atomic terms that then can be translated to
primitives supported by the target platforms —remember Kotlin is multiplatform-. We will dive a
bit more into this in this chapter, but this will give the Compose compiler the ability to transform
the Composable functions as the runtime requires.

Compiler plugins have a bright future in Kotlin. Many known annotation processors out there will
likely be migrated gradually to become compiler plugins or “lightweight” compiler plugins via KSP
(Kotlin Symbol Processing library. See the blockquote below).

If you are particularly interested in Kotlin compiler plugins I would highly recommend checking
KSP (Kotlin Symbol Processing)? a library that Google is proposing as a replacement for Kapt. KSP
proposes a normalized DSL for “writing lightweight compiler plugins” that any libraries can rely on
for metaprogramming. Make sure to give a read to the “Why KSP” section”in the KSP repository.

Also, note that the Jetpack Compose compiler relies a lot on IR transformation and that might be
dangerous if used as a widespread practice around meta-programming. If all annotation processors
out there were translated to compiler plugins we might might end up with too many IR transforms,
and something like that might destabilize the language. Tweaking/Augmenting the language always
comes with a risk. That is why KSP is probably a better pick, overall.

*https://github.com/google/ksp
*https://github.com/google/ksp/blob/main/docs/why-ksp.md

Compose annotations

Back to the order of things. The first thing we need to look at is how we annotate our code so
the compiler can scan for the required elements and do its magic. Let’s start by learning about the
Compose annotations available.

Even if compiler plugins can do quite more than annotation processors, there are some things that
both have in common. One example of this is their frontend phase, frequently used for static analysis

https://github.com/google/ksp
https://github.com/google/ksp/blob/main/docs/why-ksp.md
https://github.com/google/ksp
https://github.com/google/ksp/blob/main/docs/why-ksp.md

2. The Compose compiler 21

and validation.

The Compose compiler utilizes hooks/extension points in the kotlin compiler’s frontend to verify
that the constraints it would like to enforce are met and that the type system is properly treating
@Composable functions, declarations, or expressions, different from non-Composable ones.

Apart from that, Compose also provides other complementary annotations meant to unlock addi-
tional checks and diverse runtime optimizations or “shortcuts” under some certain circumstances.
All the annotations available are provided by the Compose runtime library.

Let’s start by making a deep dive into the most relevant annotations.

All the Jetpack Compose annotations are provided by the Compose runtime, since it is both the
compiler and the runtime the modules making good use of those.

@Composable

This annotation was already covered in depth in chapter 1. That said, it likely requires a standalone
section since it is clearly the most important one. That is why it will be the first on my list.

The biggest difference between the Compose compiler and an annotation processor is that Compose
effectively changes the declaration or expression that is annotated. Most annotation processors can’t
do this, they have to produce additional / sibling declarations. That is why the Compose compiler
uses IR transforms. The @Composable annotation actually changes the type of the thing, and the
compiler plugin is used to enforce all kinds of rules in the frontend to ensure that Composable types
aren’t treated the same as their non-composable-annotated equivalents.

Changing the type of the declaration or expression via @Composable gives it a “memory”. That is
the ability to call remember and utilize the Composer/slot table. It also gives it a lifecycle that effects
launched within its body will be able to comply with. —E.g: spanning a job across recompositions.—
Composable functions will also get assigned an identity that they will preserve, and will have a
position in the resulting tree, meaning that they can emit nodes into the Composition and address

CompositionLocals.

Small recap: A Composable function represents mapping from data to a node that is emitted to the
tree upon execution. This node can be a Ul node, or a node of any other nature, depending on the
library we are using to consume the Compose runtime. The Jetpack Compose runtime works with
generic types of nodes not tied to any specific use case or semantics. We will cover that topic in
detail towards the end of this book, when our understanding of Compose is more diverse and much
richer.

2. The Compose compiler 22

@ComposeCompilerApi

This annotation is used by Compose to flag some parts of it that are only meant to be used by the
compiler, with the only purpose of informing potential users about this fact, and to let them know
that it should be used with caution.

@InternalComposeApi

Some apis are flagged as internal in Compose since they are expected to vary internally even if the
public api surface remains unchanged and frozen towards a stable release. This annotation has a
wider scope than the language internal keyword, since it allows usage across modules, which is a
concept that Kotlin does not support.

@DisallowComposableCalls

Used to prevent composable calls from happening inside of a function. This can be useful for inline
lambda parameters of Composable functions that cannot safely have composable calls in them. It is
best used on lambdas which will not be called on every recomposition.

An example of this can be found in the remember function, part of the Compose runtime. This
Composable function remembers the value produced by the calculation block. This block is only
evaluated during the initial composition, and any further recompositions will always return the
already produced value.

Composables .kt

@Composable
inline fun <T> remember(calculation: @DisallowComposableCalls () -> T): T =
currentComposer .cache(false, calculation)

Composable calls are forbidden within the calculation lambda thanks to this annotation. If those
were allowed otherwise, they would take space in the slot table when invoked (emitting), and that
would then be disposed of after the first composition, since the lambda isn’t invoked anymore.

This annotation is best used on inline lambdas that are called conditionally as an implementation
detail, but should not be “alive” like composables are. This is only needed because inline lambdas are
special in that they “inherit” the composable abilities of their parent calling context. For example,
the lambda of a forEach call is not marked as @Composable, but you can call composable functions if
the forEach itself is called within a composable function. This is desired in the case of forEach and
many other inline APIs, but it is not desirable in some other cases like remember, which is where
this annotation comes in.

Also note that this annotation is “contagious” in the sense that if you invoke an inline lambda inside
of an inline lambda marked as @DisallowComposableCalls, the compiler will require that you mark
that lambda as @DisallowComposableCalls as well.

g b W N -

2. The Compose compiler 23

As you probably guessed, this is likely an annotation you might not ever use in any client projects,
but could become more relevant if you are using Jetpack Compose for a different use case than
Compose UL In that case you’ll likely need to write your own client library for the runtime, and
that will require you to comply with the runtime constraints.

@ReadOnlyComposable

When applied over a Composable function it means we know that the body of this Composable
will not write to the composition ever, only read from it. That also must remain true for all nested
Composable calls in the body. This allows the runtime to avoid generating code that will not be
needed if the Composable can live up to that assumption.

For any Composable that writes to the composition inside, the compiler generates a “group” that
wraps its body, so the whole group is emitted at runtime instead. These emitted groups provide
the required information about the Composable to the composition, so it knows how to cleanup any
written data later when a recomposition needs to override it with the data of a different Composable,
or how to move that data around by preserving the identity of the Composable. There are different
types of groups that can be generated: E.g: restartable groups, movable groups... etc.

For more context on what exactly a “group” is, imagine a couple of pointers at the start and end of a
given span of selected text. All groups have a source position key, which is used to store the group,
and therefore what unlocks positional memoization. That key is also how it knows different identity
between if or else branches of conditional logics like:

ConditionalTexts.kt

if (condition) {
Text("Hello")
} else {
Text("World")
}

These are both Text, but they have different identity since they represent different ideas to the caller.
Movable groups also have a semantic identity key, so they can reorder within their parent group.

When our composable does not write to the composition, generating those groups does not provide
any value, since its data is not going to be replaced or moved around. This annotation helps to avoid
it.

Some examples of read only Composables within the Compose libraries could be many
CompositionLocal defaults or utilities that delegate on those, like the Material Colors, Typography,
the isSystemInDarkTheme() function, the LocalContext, any calls to obtain application resources
of any type —since they rely on the LocalContext—, or the LocalConfiguration. Overall, it is about
things that are only set once when running our program and are expected to stay the same and be
available to be read from Composables on the tree.

2. The Compose compiler 24

@NonRestartableComposable

When applied on a function or property getter, it basically makes it be a non-restartable Composable.
(Note that not all Composables are restartable by default either, since inline Composables or
Composables with non-Unit return types are not restartable).

When added, the compiler does not generate the required boilerplate needed to allow the function
to recompose or be skipped during recomposition. Please keep in mind that this has to be used very
sparingly, since it might only make sense for very small functions that are likely getting recomposed
(restarted) by another Composable function that calls them, since they might contain very little logic
so it doesn’t make much sense for them to self invalidate. Their invalidation / recomposition will be
essentially driven by their parent/enclosing Composable, in other words.

This annotation should rarely/never be needed for “correctness”, but can be used as a very slight
performance optimization if you know that this behavior will yield better performance, which is
sometimes the case.

@StableMarker

The Compose runtime also provides some annotations to denote the stability of a type. Those are
the @StableMarker meta-annotation, and the @Immutable and @Stable annotations. Let’s start with
the @StableMarker one.

@StableMarker is a meta-annotation that annotates other annotations like @I mmutable and@Stable.
This might sound a bit redundant, but it is meant for reusability, so the implications it has also apply
over all the annotations annotated with it.

@StableMarker implies the following requirements related to data stability for the ultimately
annotated type:

« The result of calls to equals will always be the same for the same two instances.
« Composition is always notified when a public property of the annotated type changes.
« All the public properties of the annotated type are also stable.

Any types annotated with @Immutable or @Stable will also need to imply these requirements, since
both annotations are flagged as a @StableMarker, or in other words, as markers for stability.

Note how these are promises we give to the compiler so it can make some assumptions when
processing the sources, but they are not validated at compile time. That means it is up to you,
the developer, to decide when all the requirements are met.

That said, the Compose compiler will do its best to infer when certain types meet the requirements
stated above and treat the types as stable without being annotated as such. In many cases this is
preferred as it is guaranteed to be correct, however, there are two cases when annotating them
directly is important:

2. The Compose compiler 25

« When it’s a required contract/expectation of an interface or abstract class. This annotation
becomes not only a promise to the compiler but a requirement to the implementing declaration
(and unfortunately, one that is not validated in any way).

« When the implementation is mutable, but is implemented in a way where the mutability is safe
under the assumptions of stability. The most common example of this is if the type is mutable
because it has an internal cache of some sort, but the corresponding public API of the type is
independent of the state of the cache.

Class stability inference will be explained later in this chapter with much deeper detail.

@Immutable

This annotation is applied over a class as a strict promise for the compiler about all the publicly
accessible class properties and fields remaining unchanged after creation. Note that this is a stronger
promise than the language val keyword, since val only ensures that the property can’t be reassigned
via setter, but it can point to a mutable data structure for example, making our data mutable even if it
only has val properties. That would break the expectations of the Compose runtime. In other words,
this annotation is needed by Compose essentially because the Kotlin language does not provide a
mechanism (a keyword or something) to ensure when some data structure is immutable.

Based on the assumption that the value reads from the type will never change after initialized, the
runtime can apply optimizations to the smart recomposition and skipping recomposition features.

One good example of a class that could safely be flagged as @Immutable would be a data class with
val properties only, where none of them have custom getters —that would otherwise get computed
on every call and potentially return different results every time, making it become a non-stable api
to read from— and all of them are either primitive types, or types also flagged as @Immutable.

@Immutable is also a @StableMarker as explained above, so it also inherits all the implications from
it. A type that is considered immutable always obbeys the implications stated for a @StableMarker,
since its public values will never change. @I mmutable annotation exists to flag immutable types as
stable.

An extra pointer regarding last paragraph: It is worth noting that immutable types don’t notify
composition of their values changing, which is one of the requirements listed in @StableMarker, but
they don’t really have to, because their values don’t change, so it satisfies the constraint anyway.

@Stable

This one might be a bit of a lighter promise than @Immutable. It has different meaning depending on
what language element it is applied to.

2. The Compose compiler 26

When this annotation is applied to a type, it means the type is mutable -(We’'d use @Immutable
otherwise)— and it will only have the implications inherited by @StableMarker. Feel free to read
them once again to refresh your memory.

When @Stable annotation is applied to a function or a property instead, it tells the compiler that the
function will always return the same result for the same inputs (pure). This is only possible when
the parameters of the function are also @Stable, @Immutable or primitive types (those are considered

stable).

There is a nice example of how relevant this is for the runtime in docs: When all types passed as
parameters to a Composable function are marked as stable then the parameter values are compared
for equality based on positional memoization and the call is skipped if all the values are the equal to
the previous call.

An example of a type that could be flagged as @Stable is an object whose public properties do not
change but cannot be considered immutable. For example, it has private mutable state, or it uses
property delegation to a MutableState object, but is otherwise immutable in terms of how it is used
from the outside.

One more time, the implications of this annotation are used by the compiler and the runtime to make
assumptions over how our data will evolve (or not evolve) and take shortcuts where required. And
once again, this annotation should never be used unless you are completely sure its implications are
tulfilled. Otherwise we’d be giving incorrect information to the compiler and that would easily lead
to runtime errors. This is why all these annotations are recommended to be used sparingly.

Something interesting to highlight is that even if both @Immutable and @Stable annotations are
different promises with different meaning, today the Jetpack Compose compiler treats both the
same way: To enable and optimize smart recomposition and skipping recompositions. Still both
exist to leave the door open for different semantics to impose a differentiation that the compiler and
the runtime might want to leverage in the future.

Registering Compiler extensions

Once we have peeked into the most relevant available annotations provided by the runtime,
it’s time to understand how the Compose compiler plugin works and how it makes use of those
annotations.

The first thing the Compose compiler plugin does is registering itself into the Kotlin compiler
pipeline using a ComponentRegistrar, which is the mechanism that the Kotlin compiler provides for
this matter. The ComposeComponentRegistrar registers a series of compiler extensions for different
purposes. These extensions will be in charge of easing the use of the library and generating the
required code for the runtime. All the registered extensions will run along with the Kotlin compiler.

2. The Compose compiler 27

The Compose compiler also registers a few extensions depending on the compiler flags enabled.
Developers using Jetpack Compose have the chance to enable a few specific compiler flags that
allow them to enable features like live literals, including source information in the generated
code so Android Studio and other tools can inspect the composition, optimizations for remember
functions, suppressing Kotlin version compatibility checks, and/or generating decoy methods in the
IR transformation.

If we are interested on digging deeper on how compiler extensions are registered by the compiler
plugin, or other further explorations, remember that we can always browse the sources on
cs.android.com?

*https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/compiler/compiler-
hosted/src/main/java/androidx/compose/compiler/plugins/kotlin/ComposePlugin.kt

Kotlin Compiler version

The Compose compiler requires a very specific version of Kotlin, so it checks whether the Kotlin
compiler version used matches the required one. This is the first check happening since it is a big
blocker if not fulfilled.

There is the chance to bypass this check by using the suppresskotlinversionCompatibilityCheck
compiler argument, but that is at our own risk, since then we become able to run Compose with
any version of Kotlin, which could easily lead to important inconsistencies. Even more if we think
about the evolution of the Kotlin compiler backends in latest Kotlin versions. This paremeter was

probably added to allow running and testing Compose against experimental Kotlin releases and the
like.

Static analysis

Following the standard behavior of an average compiler plugin, the first thing that happens is linting.
Static analysis is done by scanning the sources searching for any of the library annotations and then
performing some important checks to make sure they are used correctly. And by correctly I mean
the way the runtime expects. Here, relevant warnings or errors are reported via the context trace,
which compiler plugins have access to. This integrates well with idea, since it is already prepared
to display those warnings or errors inline while the developer is still typing. As mentioned earlier,
all these validations take place in the frontend phase of the compiler, helping Compose to provide
the fastest possible feedback loop for developers.

Let’s have a look to some of the most important static checks performed.

https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/compiler/compiler-hosted/src/main/java/androidx/compose/compiler/plugins/kotlin/ComposePlugin.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/compiler/compiler-hosted/src/main/java/androidx/compose/compiler/plugins/kotlin/ComposePlugin.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/compiler/compiler-hosted/src/main/java/androidx/compose/compiler/plugins/kotlin/ComposePlugin.kt

2. The Compose compiler 28

Static Checkers

Some of the registered extensions come in the form of static checkers that will guide developers while
coding. Checkers for calls, types and declarations are registered as extensions by Jetpack Compose.
They will ensure the correct use of the library, and are obviosuly opinionated towards the problem
the library wants to solve. Things like requirements for Composable functions like the ones we
learned in chapter 1 are validated here and reported when violated.

In the world of Kotlin compilers there are different types of analyzers available depending on the
element we want to check. There are checkers for class instantiation, types, function calls, deprecated
calls, contracts, capturing in closure, infix calls, coroutine calls, operator calls and many more that
allow compiler plugins to analyze all the corresponding elements from the input sources and report
information, warnings, or errors where needed.

Given all registered checkers run in the frontend phase of the Kotlin compiler, they are expected to
be very fast and not contain very cpu consuming operations. That is a responsibility of the developer,
so keeping always in mind that these checks will run while the developer types and that we do not
want to create a janky user experience is key. We want to implement lightweight checkers.

Call checks

One of the different kinds of checkers registered by Compose are the ones used to validate calls.
The Compose compiler has static call checks in place for validating composable function calls in
many different contexts, like when they are done under the scope of @DisallowComposableCalls or
@ReadOnlyComposable .

A Call checker is a compiler extension used to perform static analysis on all calls across our codebase,
so it provides a check function that is recursively called for visiting all the PSI elements that are
considered calls in our sources. Or in other words: All nodes on the PSI tree. It’s an implementation
of the visitor pattern.

Some of these checks require a wider context than the current language element they are visiting,
since they might need to know things like from where the Composable is called, for example. This
means that analyzing a single PSI node is not enough. Gathering such information requires recording
smaller bits of information from different elements visited, like a breadcumb to build a story as a
whole, and perform more complex validations on further passes. To do this, the compiler can record
that information conveniently in the context trace. This allows to widen the scope for the checks in
place, and be able to look for enclosing lambda expressions, try / catch blocks, or similar things that
might be relevant.

Here is an example of a compiler call that records relevant information to the trace and also
uses it to report an error when a Composable call is done within a context flagged with
@DisallowComposableCalls:

2. The Compose compiler 29

ContextTraceExamples.kt

if (arg?.type?.hasDisallowComposableCallsAnnotation() == true) {
context.trace.record(
ComposeWritableSlices. LAMBDA_CAPABLE_OF _COMPOSER_CAPTURE,
descriptor, // reference to the function literal
false
)
context.trace.report(
ComposeErrors.CAPTURED_COMPOSABLE _INVOCATION.on(
reportOn,
arg,

arg.containingDeclaration

)

return

The context and therefore the context trace are available from every call to the check function, and
indeed it is the same trace we can also use to report errors, warnings or information messages. We
can understand the trace as a mutable structure we can fill up with relevant information to carry
across the overall analysis.

Other checks are simpler and only require the information available on the current element visited,
so they perform their action and return. On every check call, the plugin will match the element type
for the current node, and depending on it, it simply performs a check and returns —if everything is
correct—, reports an error —if needed—, records relevant information to the context trace, or recurses
again to the parent of this node to keep visiting more nodes and gather more information. Different
checks for different annotations are performed along the way.

One thing that the Compose compiler checks is that Composables are not called from disallowed
places, like from within a try/catch block (that is not supported), from a function not annotated
as Composable also, or from lambdas annotated with @DisallowComposableCalls. —Remember that
annotation was used to avoid composable annotations within inline lambdas.—-

For each composable call, the compiler visits up the PSI tree checking its callers, the callers of its
callers, and so on, to confirm that all the requirements for this call are fulfilled. All scenarios are taken
into account, since parents can be lambda expressions, functions, properties, property accessors,
try/catch blocks, classes, files, and more.

2. The Compose compiler 30

The PSI models the structure of the language for the frontend compiler phases, hence we must keep
in mind that its way to understand code is completely syntatical and static.

It is also important for these checks to take inline functions into account, since it must be possible
to call a Composable function from an inline lambda as long as the callers of the inline lambda
are also Composable. The compiler checks that any inline lambdas calling Composable functions
are also enclosed by a Composable function at some level up the call stack.

Another call check performed is the one detecting the potentially missing Composable annotations
where they would be required or expected, so it can conveniently ask the developer to add those.
—E.g: If a Composable function is being called within a lambda, compiler will friendly suggest to also
add the Composable annotation to that lambda.— Static analysis checks exist to guide the developer
while writing code, so it is not all about forbidding, sometimes they can infer and suggest what is
needed or tell us how to improve our code.

There are also static call checks in place for Composable functions annotated as
@ReadOnlyComposable. Those can only call other read only Composables, since otherwise we
would be breaking the contract for the optimization, where a read only composable can only read
from the composition, never write to it. Given this must be fulfilled at all depth levels within the
Composable, the visitor pattern will come handy.

Another check we can find is the one to disallow the use of Composable function references, since
that is not supported by Jetpack Compose at this point.

Type checks

Sometimes we annotate types as Composable, not only functions. For that, the Compose compiler
has a check related to type inference, so it can report when a type annotated with @Composable
was expected but a non-annotated type was found instead. Similar to the check for function calls
mentioned above. The error will print the inferred and expected types along with their annotations
to make the difference more obvious.

Declaration checks

Checks for call sites and types are needed, but not enough. Declaration sites are also part of any
Compose codebase. Things like properties, property accessors, function declarations or function
parameters need to be analyzed.

Properties, property getters and functions can be overridden, even when they are annotated as
Composable. The Composer compiler has a check in place to ensure that any overrides of any of
those KtElements is also annotated as Composable to keep coherence.

o N O O b W N =

2. The Compose compiler 31

Another declaration check available is the one to ensure that Composable functions are not suspend,
since that is not supported. As explained in chapter 1, suspend has a different meaning than
@Composable, and even if both could be understood as language primitives somehow, they are
designed to represent completely different things. Both concepts are not supported together as of
today.

Things like Composable main functions or backing fields on Composable properties are also
forbidden via declaration checks.

Diagnostic suppression

Compiler plugins can register diagnostic suppressors as extensions so they can basically mute
diagnostics for some specific circumstances —e.g: errors notified by static checks—. This is usual
when compiler plugins generate or support code that the Kotlin compiler wouldn’t normally accept,
so that it can bypass the corresponding checks and make it work.

Compose registers a ComposeDiagnosticSuppressor to bypass some language restrictions that would
otherwise fail compilation, so that can unleash some specific use cases.

One of these restrictions goes for inline lambdas annotated with “non-source annotations” on call
sites. That is annotations with retention BINARY or RUNTIME. Those annotations survive until the
output binaries, not like SOURCE annotations. Given inline lambdas are effectively inlined into their
callers at compile time, they’re not gonna be stored anywhere, so there will not be anything to
annotate anymore at that point. That is why Kotlin forbids this and reports the following error:

“The lambda expression here is an inlined argument so this annotation cannot be stored anywhere.”.

Here is an example on a piece of code that would trigger the error using plain Kotlin:

AnnotatedInlineLambda.kt

@Target(AnnotationTarget.FUNCTION)

annotation class FunAnn

inline fun myFun(a: Int, f: (Int) -> String): String = f(a)

fun main() {
myFun(1) @FunAnn { it.toString() } // Call site annotation

}

The Compose compiler suppresses this check only for cases where the annotation used is
@Composable, so we can write code like the following:

© 00 N O O & W N =

SN
N O

© 00 N O O b W N =

T = = =N
0 N O O b W N =~ O

2. The Compose compiler 32

AnnotatedComposableInlineLambda.kt

@Composable

inline fun MyComposable(@StringRes nameResId: Int, resolver: (Int) -> String) {
val name = resolver(nameResId)
Text(name)

@Composable
fun Screen() {
MyComposable(nameResId = R.string.app_name) @Composable {
LocalContext.current.resources.getString(it)

This allows to annotate our lambda parameters as @Composable on call sites, so we don’t necessarily
have to do it on the function declaration. This allows the function to have a more flexible contract.

Another language restriction that gets bypassed with the suppressor is related to allowing named
arguments in places the Kotlin compiler would not support, but only in case the function they belong
to is annotated as @Composable.

One example is function types. Kotlin does not allow named arguments on those, but Compose
makes it possible if the function is annotated as Composable:

NamedParamsOnFunctionTypes.kt

interface FileReaderScope {
fun onFileOpen(): Unit
fun onFileClosed(): Unit
fun onLineRead(line: String): Unit

object Scope : FileReaderScope {
override fun onFileOpen() = TODO()
override fun onFileClosed() = TODO()
override fun onLineRead(line: String) = TODO()

@Composable
fun FileReader(path: String, content: @Composable FileReaderScope.(path: String) -> \
Unit) {
Column {
/S
Scope.content(path = path)

19
20

2. The Compose compiler 33

If we remove the @Composable annotation we’ll get an error like:
“Named arguments are not allowed for function types.”

Same requirement is suppressed in other cases like members of expected classes. Remember Jetpack
Compose aims to be multiplatform, so the runtime should definitely accept expect functions and
properties flagged as Composable.

Runtime version check

We already have all the static checkers and the diagnostic suppressor installed. We can move on to
more interesting things. The first thing happening right before code generation is a check for the
Compose runtime version used. The Compose compiler requires a minimum version of the runtime
so it has a check in place to ensure that the runtime is not outdated. It is able to detect both when
the runtime is missing and when it is outdated.

A single Compose compiler version can support multiple runtime versions as long as they are higher
than the minimum supported one.

This is the second version check in place. There is one for the Kotlin compiler version, and then this
other one for the Jetpack Compose runtime.

Code generation

Finally, it’s time for the Compiler to move on to the code generation phase. That is another thing
annotation processors and compiler plugins have in common, since both are frequently used to
synthesize convenient code that our runtime libraries will consume.

The Kotlin IR

As explained previously, compiler plugins have the ability to modify the sources, not only generate
new code, since they have access to the intermediate representation of the language (IR) before
it yields the ultimate code for the target platform/s. That means the compiler plugin can sneak in
and replace parameters, add new ones, reshape the structure of code before “committing” it. This
takes place in the backend phases of the Kotlin compiler. And as you probably guessed, this is what
Compose does for “injecting” the implicit extra parameter, the Composer, to each Composable call.

Compiler plugins have the ability to generate code in different formats. If we were only targeting
the JVM we could think of generating Java compatible bytecode, but following the latest plans and

2. The Compose compiler 34

refactors from the Kotlin team towards stabilizing all the IR backends and normalizing them into a
single one for all platforms, it makes much more sense to generate IR. Remember that the IR exists
as a representation of the language elements that remains agnostic of the target platform -an
“intermediate representation”-. That means generating IR will potentially make Jetpack Compose
generated code multiplaform.

The Compose compiler plugin generates IR by registering an implementation of the
IrGenerationExtension, which is an extension provided by the Kotlin compiler common IR

backend.

If you want to learn Kotlin IR in depth I highly recommend to check these series?by Brian Norman
that covers the Kotlin IR, and the compiler plugin creation topic, overall. It helped me to learn a lot
of interesting things. Learning IR in depth is necessarily out of the scope of this book.

*https://blog.bnorm.dev/writing-your-second- compiler-plugin-part-2

Lowering

The term “lowering” refers to the translation compilers can do from higher level or more advanced
programming concepts to a combination of lower level more atomic ones. This is pretty common
in Kotlin, where we have an intermediate representation (IR) of the language that is able to express
pretty advanced concepts that then need to get translated to lower level atomics before transforming
them to JVM byte code, Javascript, LLVM’s IR, or whatever platform we target. The Kotlin compiler
has a lowering phase for this matter. Lowering can also be understood as a form of normalization.

The Compose compiler needs to lower some of the concepts the library supports, so they are
normalized to a representation that the runtime can understand. The process of lowering is the actual
code generation phase for the Compose compiler plugin. This is where it visits all the elements from
the IR tree and tweaks the IR at will for those required based on the runtime needs.

Here is a brief summary of a few meaningful examples of things happening during the lowering
phase that we are covering in this section:

« Inferring class stability and adding the required metadata to understand it at runtime.

« Transforming live literal expressions so they access a mutable state instance instead so it is
possible for the runtime to reflect changes in the source code without recompiling (live literals
feature).

« Injecting the implicit Composer parameter on all Composable functions and forwarding it to all
Composable calls.

https://blog.bnorm.dev/writing-your-second-compiler-plugin-part-2
https://blog.bnorm.dev/writing-your-second-compiler-plugin-part-2

2. The Compose compiler 35

« Wrapping Composable function bodies for things like:
— Generating different types of groups for control-flow (replaceable groups, movable
groups...).
— Implementing default argument support, so they can be executed within the scope of the
generated group of the function —instead of relying on Kotlin default param support-.
— Teach the function to skip recompositions.

— Propagating relevant information regarding state changes down the tree so they can
automatically recompose when they change.

Let’s learn all kinds of lowering applied by the Jetpack Compose compiler plugin.

Inferring class stability

Smart recomposition means skipping recomposition of Composables when their inputs have not
changed and those inputs are considered stable. Stability is a very relevant concept in this
sense, since it means that the Compose runtime can safely read and compare those inputs to skip
recomposition when needed. The ultimate goal of stability is to help the runtime.

Following this line of thought, let’s recap over the properties that a stable type must fulfill:

« Calls to equals for two instances always return the same result for the same two instances.
That means comparison is coherent, so the runtime can rely on it.

« Composition is always notified when a public property of the type changes. Otherwise, we
could end up with desynchronization between the input of our Composable and the latest
state they reflect when materialized. To make sure this doesn’t happen, recomposition is always
triggered for cases like this one. Smart recomposition can’t rely on this input.

« All public properties have primitive types or types that are also considred stable.

All primitive types are considered stable by default, but also String, and all the function types. That
is because they’re immutable by definition. Since immutable types do not change they do not need
to notify the composition either.

We also learned that there are types that are not immutable but can be assumed as stable by Compose
~they can be annotated with @stable-. One example of this is MutableState, since Compose is
notified every time it changes, hence it’s safe to rely on it for smart recomposition.

For custom types that we create in our code, we can determine if they comply with the properties
listed above, and flag them manually as stable using the @Immutable or @stable annotations
conveniently. But relying on developers to keep that contract fulfilled can be quite risky and hard
to maintain over time. Inferring class stability automatically would be desirable instead.

Compose does this. The algorithm to infer stability is in constant evolution, but it goes along the
lines of visiting every class and synthetizing an annotation called @StabilityInferred for it. It also

2. The Compose compiler 36

adds a syntheticstatic final int $stable value that encodes the relevant stability information for
the class. This value will help the compiler to generate extra machinery in later steps to determine
the stability of the class at runtime, so Compose can determine if our Composable functions that
depend on this class need to recompose or not.

Truth be told, it’s not literally every class, but only every eligible class. That is every public class
that is not an enum, an enum entry, an interface, an annotation, an anonymous object, an expect
element, an inner class, a companion, or inline. Also not if it’s already flagged as stable with the
annotations mentioned above, as you probably guessed. So, overall, it’s just classes, data classes, and
the like that have not been annotated as stable already. It makes sense, given that is what we’ll use
to model the inputs of our Composable functions.

To infer the stability of a class, Compose has different things into account. A type is inferred stable
when all of the fields of the class are readonly and stable. Referring to “field” as in terms of the
resulting JVM bytecode. Classes like class Foo, or class Foo(val value: Int) will be inferred as
stable, since they have no fields or stable fields only. Then things like class Foo(var value: Int)
will be inferred as unstable right away.

But things like the class generic type parameters might also affect class stability, e.g:

FooWithTypeParams.kt

class Foo<T>(val value: T)

In this case, T is used for one of the class parameters and therefore stability of Foo will rely on
stability of the type passed for T. But given T is not a reified type, it will be unknown until the
runtime. Therefore, it needs to exist some machinery to determine stability of a class at runtime,
once the type passed for T is known. To solve this, the Compose compiler calculates and puts a
bitmask into the StabilityInferred annotation that indicates that calculating the stability of this
class at runtime should depend on the stability of the corresponding type parameter/s.

But having generic types does not necessarily mean unstable. The compiler knows that for example,
code like: class Foo<T>(val a: Int, b: T) { val c: Int = b.hashCode() } is stable since hashCode
is expected to always return the same result for the same instance. It’s part of the contract.

For classes that are composed of other classes, like class Foo(val bar: Bar, val bazz: Bazz),
stability is inferred as the combination of the stability of all the arguments. This is resolved
recursively.

Things like internal mutable state also make a class unstable. One example of this could be the
following:

g b W N =

Bw N -

© 00 N O O b W N =

2. The Compose compiler 37

Counter.kt

class Counter {
private var count: Int = 0
fun getCount(): Int = count
fun increment() { count++ }

This state mutates over time even if it’s mutated internally by the class itself. That means the runtime
can’t really trust on it being consistent.

Overall the Compose compiler considers a type stable only when it can prove it. E.g: an interface is
assumed to be unstable, because Compose doesn’t know how it’s going to be implemented.

MyListOfItems.kt

@Composable
fun <T> MyListOfItems(items: List<T>) {
/S

In this example we get a List as an argument, which can be implemented in mutable ways -see:
ArraylList-. It is not safe for the compiler to assume we’ll be using immutable implementations only,
and inferring that is not that easy, so it will assume it’s unstable.

Another example is types with mutable public properties whose implementation could be immutable.
Those are also considered not stable by default, since the compiler is not able to infer that much.

This is a bit of a con, since many times those things could be implemented to be immutable and for
what is worth for the Compose runtime that should be enough. For that reason, if a model that we
are using as input for our Composable functions is considered unstable by Compose, we can still
flag it as @Stable explicitly if we have more information in our hand and its under our control. The
official docs give this example, which is pretty meaninful:

UiState.kt

// Marking the type as stable to favor skipping and smart recompositions.
@Stable
interface UiState<T : Result<T>> {

val value: T?

val exception: Throwable?

val hasError: Boolean
get() = exception != null

2. The Compose compiler 38

There are more cases covered by the class stability inference algorithm. For all the cases covered by
this feature I definitely suggest you to read the library tests® for the ClassStabilityTransform.

Keep in mind internals of how stability is inferred by the compiler can likely vary and get improved
over time. The good point is that it will always be transparent for the library users.

Enabling live literals

Disclaimer: This section is quite close to implementation details and is in constant evolution. It
might change again multiple times in the future and evolve in different ways as more efficient
implementations are figured out.

One of the flags we can pass to the compiler is the live literals one. Over time there have been two
implementations of this feature, so you can enable either one or the other using the l1iveLiterals
(v1) or liveliteralsEnabled (v2) flags.

Live literals is this feature where the Compose tools are able to reflect changes live in the preview
without the need for recompilation. What the compose compiler does is replacing those expressions
by new versions of them that read their values from a MutableState instead. That allows the runtime
to be notified about changes instantly, without the need for recompiling the project. As the library
kdocs expose:

“This transformation is intended to improve developer experience and should never be enabled in a
release build as it will significantly slow down performance-conscious code”

The Compose compiler will generate unique ids for each single constant expression in our codebase,
then it transforms all those constants into property getters that read from some MutableState that
is holded into a generated singleton class per file. At runtime, there are apis to obtain the value for
those constants using the generated key.

Here is an example extracted from the library kdocs. Let’s say we start with this Composable:

*https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/compiler/compiler-hosted/integration-
tests/src/test/java/androidx/compose/compiler/plugins/kotlin/ClassStability TransformTests.kt

https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/compiler/compiler-hosted/integration-tests/src/test/java/androidx/compose/compiler/plugins/kotlin/ClassStabilityTransformTests.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/compiler/compiler-hosted/integration-tests/src/test/java/androidx/compose/compiler/plugins/kotlin/ClassStabilityTransformTests.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/compiler/compiler-hosted/integration-tests/src/test/java/androidx/compose/compiler/plugins/kotlin/ClassStabilityTransformTests.kt

Bsw N

O© 00 I O O b W N =

NN NN N N P s s Ly
g b W0 N P 0 O 00 N O O b W N »~ O

2. The Compose compiler 39

LiveLiterals1.kt

@Composable
fun Foo() {
print("Hello World")

Will get transformed to the following.

LiveLiterals2.kt
// file: Foo.kt
@Composable
fun Foo() {
print(LiveLiterals$FooKt. getString$arg-0$call-print$fun-Foo ())

object LiveLiterals$FooKt {
var “String$arg-0$call-print$fun-Foo : String = "Hello World"
var “State$String$arg-0%$call-print$fun-Foo : MutableState<String>? = null
fun “getString$arg-0$call-print$fun-Foo (): String {

val field = this. String$arg-0$call-print$fun-Foo"

if (field == null) {
val tmp = livelLiteral(

val state

"String$arg-0$call-print$fun-Foo",
this. String$arg-0$call-print$fun-Foo"
)
this. String$arg-0%$call-print$fun-Foo™ = tmp
tmp
} else field

return field.value

We can see how the constant is replaced by a getter that reads from the MutableState held into the
generated singleton for the corresponding file.

Compose lambda memoization

This step generates convenient IR to teach the runtime how to optimize the execution of lambdas
passed to Composable functions. This work is done for two types of lambdas:

O O B W N

2. The Compose compiler 40

« Non-composable lambdas: The compiler generates IR for memoizing these by wrapping each
lambda into a remember call. Think of a callback we pass to a Composable function, for example.
Here, remember allows to appeal to the slot table to store and read these lambdas later.

« Composable lambdas: The compiler generates IR to wrap them and add relevant information
to teach the runtime how to store and read the expression to/from the Composition. This has
the same final goal than using remember, but it is not using it. An example of this can be the
content Composable lambdas we pass to our Compose UI nodes when calling them.

Non-composable lambdas

This action optimizes lambda calls passed to Composable functions so they can be reused. Kotlin
already optimizes lambdas when they don’t capture any values by modeling them as singletons,
so there is a single reusable instance for the complete program. That said, this optimization is not
possible when lambdas capture values, since those values might vary per call making it unique, and
therefore a different instance per lambda will be needed. Compose is smarter for this specific case.
Let’s explore this using an example:

NamePlateClickLambda kt

@Composable

fun NamePlate(name: String, onClick: () -> Unit) {
/S
// onClick()
V72

Here, onClick is a standard Kotlin lambda that is passed to a Composable function. If the lambda we
pass to it from the call site captures any values, Compose has the ability to teach the runtime how to
memoize it. That basically means wrapping it into a call to remember. This is done via the generated
IR. This call will remember the lambda expression based on the values it captures, as long as these
values are stable. This allows the runtime to reuse lambdas that already exist instead of creating
new ones, as long as the values they capture match (input parameters included).

The reason to require the captured values to be stable is that they will be used as condition arguments
for the remember call, so they must be reliable for comparison.

Note that memoized lambdas cannot be inline, since otherwise there would be nothing to remember
after they are inlined on their callers at compile time.

This optimization only makes sense for lambdas that capture. If they don’t, Kotlin’s default
optimization —representing those as singletons- is sufficient.

O O b W N -

2. The Compose compiler 41

As explained above, memoization is done based on the lambda captured values. When generating
the IR for the expression, the compiler will prepend a call to remember with the return type matching
the type of the memoized expression, then it will add the generic type argument to the call -
remember <T>. . .- to match the expression return type. Right after, it will add all the values captured
by the lambda as condition arguments —remember<T>(argl, arg2...)— so they can be used for
comparison, and finally, the lambda for the expression —remember<T>(argl, arg2..., expression)
so it can work as a trailing lambda-.

Using the captured values as condition arguments will ensure that they are used as keys for
remembering the result of the expression, so it will be invalidated whenever those vary.

Automatically remembering lambdas passed to Composable functions unlocks reusability when
recomposition takes place.

Composable Lambdas

The Compose compiler is also able to memoize Composable lambdas. Implementation details just
happen to be different for this case given the “special” way Composable lambdas are implemented.
But the ultimate goal is the same: Store and read these lambdas to/from the slot table.

Here is an example of a Composable lambda that will get memoized:

Container.kt

@Composable

fun Container(content: @Composable () -> Unit) {
/S
// content()
V2

To do it, the IR of the lambda expression is tweaked so it calls a composable factory function with
some specific parameters first: composableLambda(. . .).

The first parameter added will be the current $composer, so it is forwarded as expected.
composablelLambda($composer, ...).

Then it will add the key parameter, obtained from a combination of the hashcode from the
fully qualified name of the Composable lambda, and the expression start offset, which is
essentially where it is located in the file, to make sure the key is unique —positional memoization-.
composablelLambda($composer, $key, ...).

After the key, a boolean parameter shouldBeTracked is added. This parameter determines whether
this Composable lambda call needs to be tracked or not. When lambdas have no captures, Kotlin
turns them into singleton instances, because they will never change. That also means they do not
need to be tracked by Compose. composablelLambda($composer, $key, $shouldBeTracked, ...).

2. The Compose compiler 42

An optional parameter about the arity of the expression can also be added, only needed when it has
more than 22 parameters (magic number). composablelLambda($composer, $key, $shouldBeTracked,
$arity, ...).

Finally, it adds the lambda expression itself as the final parameter of the wrapper (the block, as a
trailing lambda). composablelLambda($composer, $key, $shouldBeTracked, $arity, expression).

The purpose of the Composable factory function is straightforward: Adding a replaceable group to
the composition to store the lambda expression using the generated key. This where Compose
teaches the runtime how to store and retrieve the Composable expression.

On top of this wrapping, Compose can also optimize Composable lambdas that do not capture values,
the same way Kotlin does: by representing those using singletons. For this, it generates a synthetic
“ComposableSingletons” internal object per file where Composable lambdas were found. This
object will retain (memoize) static references to those Composable lambdas and also include getters
for those so they can be retrieved later.

Composable lambdas have a final optimization provided by the way they are implemented: Similarly
to MutableState. We can think of a Composable lambda like @Composable (A, B) -> C as being
equivalently implemented as State<@Composable (A, B) -»> C.Callsites where the lambda is invoked
(lambda(a, b)) can then be replaced with the equivalent 1ambda.value.invoke(a, b).

This is an optimization. It creates a snapshotted state object for all Composable lambdas, which
allows Compose to more intelligently recompose sub-hierarchies based on lambdas changing. This
was originally called “donut-hole skipping”, because it allows for a lambda to be updated “high” in
the tree, and for compose to only need to recompose at the very “low” portion of the tree where
this value is actually read. This ends up being a good tradeoff for lambdas in particular since their
natural usage results in the instance being passed around a lot and often into “lower” portions of the
hierarchy without ever actually “reading” their value (invoking them).

Injecting the Composer

This is the step where the Compose compiler replaces all Composable functions by new versions of
them with an extra Composer synthetic parameter added. This parameter is also forwarded to every
Composable call in code to ensure it is always available at any point of the tree. That also includes
calls to Composable lambdas.

This also requires some type remapping work, since the function type varies when the compiler
plugin adds extra parameters to it.

O 00 N O O & W N =

[S Y
g b W N =~

2. The Compose compiler 43

@Composable fun A() —) —) @Composable fun A(composer)
@Composable fun B() —) Compiler —) @Composable fun B(composer)
@Composable fun C() —) —) @Composable fun C(composer)

Composer injection

This effectively makes the Composer available for any subtree, providing all the information required
to materialize the Composable tree and keep it updated.

Here is an example of it.

NamePlate kt

fun NamePlate(name: String, lastname: String, $composer: Composer) {
$composer .start(123)
Column(modifier = Modifier.padding(16.dp), $composer) {
Text(
text = name,
$composer
)
Text(
text = lastname,
style = MaterialTheme.typography.subtitlel,
$composer

}

$composer .end()

Inline lambdas that are not Composable are intentionally not transformed, since they’ll disappear
at compile time when they’re inlined on their callers. Also, expect functions are not transformed
either. Those functions are resolved to the actual ones on type resolution, meaning it’s the latter
the ones that would be transformed in any case.

2. The Compose compiler 44
Comparison propagation

We have learned about how the compiler injects the $composer extra parameter and forwards it to all
composable calls. There is some extra pieces of metadata that are also generated and added to every
Composable. One of them is the $changed parameter. This parameter is used to bring clues about
whether the input parameters of the current Composable might have changed since the previous
composition. This allows to skip recompositions.

SyntheticChangedParam1.kt

@Composable
fun Header(text: String, $composer: Composer<*>, $changed: Int)

This parameter is synthesized as a combination of bits that represent this condition for each one of
the function input parameters —~There’s a single $changed param that encodes this condition for every
n input params (10 or so), which is limited by the amount of bits used. If the composable happens to
have more params, 2 or more flags are added—. The reason for using bits is that processors are very
good at bit processing by design.

Carrying this information allows certain optimizations for the runtime:

« It can skip equals comparisons to check whether an input parameter has changed from its latest
stored value —from previous compositions—. This happens for cases where the input parameter
is known to be static. The $changed bitmask provides this information. Let’s say this parameter
is a String literal like in the snippet above, a constant, or something similar. The bits on this
flag will tell the runtime that the value is known at compile time, hence it will never change
at runtime, and therefore the runtime can avoid comparing it ever.

« There are also cases where the parameter will have always either not changed since the last
composition, or if changed, its comparison is guaranteed to have been done already by a parent
Composable in the tree. That means there is no need to recompare it. In this case, the state of
the parameter is considered “certain”.

« For any other cases, the state is considered “uncertain”, so the runtime can just go ahead,
compare it —using equals—, and store it in the slot table, so that we can always find the latest
result later on. The bit value for this case is @, which is the default case. When o is passed for
the $changed parameter we are telling the runtime to do all the work (not take any shortcuts).

Here is an example of how a Composable function body looks after injecting the $changed param
and the required logic to handle it:

© 00 N O O & W N =

SN
N O

2. The Compose compiler 45

SyntheticChangedParam2 kt

@Composable
fun Header(text: String, $composer: Composer<*>, $changed: Int) {
var $dirty = $changed

if ($changed and 0b0110 === 0) {
$dirty = $dirty or if ($composer.changed(text)) 0bo010 else 0b0100
}
if (%dirty and 0b1011 xor 0b1010 !== 0 || !$composer.skipping) {
f(text) // executes body
} else {

$composer . skipToGroupEnd()

There is some bit dance in there, but trying to stay agnostic of low level details, we can see how
a local variable $dirty is used. This variable stores whether the param changed or not, and that
is determined by both the $changed param bitmask and in case it is needed, the value previously
stored in the slot table. If the value is considered “dirty” (has changed), the function body gets called
(recomposed). Otherwise the Composable will skip recomposition.

Given recomposition can happen lots of times, carrying information about how the input state
evolves can potentially save quite a bit of computation time and also lots of space. Often times
parameters are passed through many composable functions and Compose does not want to store
and compare them each time, as each time it does, it will take up slot-table space.

The same way that our Composable gets the $changed parameter passed by the caller, this
Composable also has the responsibility to forward any information it has about any parameters
passed down the tree. This is called “comparison propagation”. This is information we have available
in the body —during composition—, so if we already know that an input has changed, is static, or
whatever, we can forward that information to the $changed parameter of any child Composable that
happens to reuse that parameter.

The changed parameter also encodes information about whether or not the argument passed into the
function is known to be stable or unstable. this allows for a function accepting a broader type (say
List<T>) to skip if the parameter is stable based on the input argument being something inferred as
such (like say the expression 1istOf(1, 2)).

If you want to go more in depth about this, there are some nice videos?®explaining the foundations
of this plus stability inference by Leland Richardson that you could want to watch.

*https://www.youtube.com/watch?v=bg0R9- AUXQM&ab_channel=LelandRichardson

https://www.youtube.com/watch?v=bg0R9-AUXQM&ab_channel=LelandRichardson
https://www.youtube.com/watch?v=bg0R9-AUXQM&ab_channel=LelandRichardson

© 00 1 O O b wWw N =

=Y
N \N]

2. The Compose compiler 46

Default parameters

Another extra piece of metadata that is added to each Composable function at compile time is/are
the $default parameter/s.

The default argument support by Kotlin is not usable for arguments of Composable functions, since
Composable functions have the need to execute the default expressions for their arguments inside the
scope (generated group) of the function. To do this Compose provides an alternative implementation
of the default argument resolution mechanism.

Compose represents default arguments using a $default bitmask parameter that maps each
parameter index to a bit on the mask. Kind of like what its done for the $changed parameter/s. There
is also one $default param every n input parameters with default values. This bitmask provides
information about whether the parameters have a value provided at the call site or not, to determine
if the default expression must be used.

I've extracted this example from the library docs that shows very clearly how a Composable function
looks before and after the $default bitmask is injected, plus the code to read it and use the default
parameter value if required.

DefaultParam kt

// Before compiler (sources)
@Composable fun A(x: Int = 0) {
£(x)

// After compiler
@Composable fun A(x: Int, $changed: Int, $default: Int) {
Y/
val x = if ($default and 0b1l != Q) 0 else x
f(x)
V72

Once again there is some bit dance, but the comparison simply checks the $default bitmask to
default to @ or keep the value passed for x.

Control flow group generation

The Compose compiler also inserts a group on the body of each Composable function. There are
different types of groups that can be generated depending on the control flow structures found
within the body:

© 0O N O O b W N =

T N = =N
© 00 N O O b W N =~ O

2. The Compose compiler 47

« Replaceable groups.
« Movable groups.
« Restartable groups.

Composable functions end up emitting groups at runtime, and those groups wrap all the relevant
information about the current state of the Composable call. This allows the Composition to know
how to cleanup any written data when the group needs to be replaced (replaceable groups), move the
data around by preserving the identity of the Composable all the time (movable groups), or restart
the function during recomposition (restartable groups).

At the end of the day, the runtime needs to know how to deal with control-flow based on the
information that the Composition has stored in memory.

Groups also carry information about the position of the call in the sources. They wrap a span of
text in the sources and have a key generated using the position of the call as one of its factors. That
allows to store the group, and unlocks positional memoization.

Replaceable groups

A few sections ago we explained that the body of a Composable lambda is automatically wrapped
by inserting a call to a Composable function factory that gets passed information like the $composer,
the generated $key, and the actual Composable lambda expression, among other things.

This is how that factory function looks in code:

ReplaceableGroup.kt

fun composablelambda(
composer: Composer,
key: Int,
tracked: Boolean,
block: Any
): ComposablelLambda {
composer .startReplaceableGroup(key)
val slot = composer.rememberedValue()
val result = if (slot === Composer.Empty) {
val value = ComposablelLambdalImpl(key, tracked)
composer . updateRememberedValue(value)
value
} else {
slot as ComposablelLambdalmpl
}
result.update(block)
composer .endReplaceableGroup()

return result

© 00 N O O b W N =

I = SN
B W N SO

g b w N

2. The Compose compiler 48

This factory function is called for Composable lambdas, like the ones used for the content of our
Composable functions. If we look at it carefully, we’ll notice that it starts a replaceable group with
the key first, and closes the group at the end, wrapping all the text span in the middle. In between
the start and end calls, it updates the composition with the relevant information. For this specific
case, that is the lambda expression we are wrapping.

That is for Composable lambdas, but it happens the same way for other Composable calls. Here is
an example of how the code for an average Composable function is transformed when it is flagged
as non-restartable:

ReplaceableGroup2.kt

// Before compiler (sources)
@NonRestartableComposable
@Composable
fun Foo(x: Int) {

Wat ()

// After compiler

@NonRestartableComposable

@Composable

fun Foo(x: Int, %composer: Composer?, %changed: Int) {
%composer .startReplaceableGroup(<>)
Wat (%composer, 0)
%composer .endReplaceableGroup()

The Composable call will also emit a replaceable group that will be stored in the Composition.

Groups are like a tree. Each group can contain any number of children groups. If that call to wat is
also a Composable, the compiler will also insert a group for it.

Some section ago we used the following example to showcase how identity can be preserved also
based in position of a Composable call, so the runtime can understand these two calls to Text as
different:

ConditionalTexts.kt

if (condition) {
Text("Hello")

} else {
Text("World")

A Composable function that does some conditional logic like this will also emit a replaceable group,
so it stores a group that can be replaced later on when the condition toggles.

© 00 N O O b W N =

N
()

© 00 N O O & W N =

= =y
© 00 N O O & W N =~ o

2. The Compose compiler 49

Movable groups

These are groups that can be reordered without losing identity. Those are only required for the body
of key calls at this point. Recapping a bit on an example we used in previous chapter:

MovableGroup.kt

@Composable
fun TalksScreen(talks: List<Talk>) {
Column {
for (talk in talks) {
key(talk.id) { // Unique key
Talk(talk)

Wrapping our Talk into the key composable ensures it is given a unique identity without exception.
When we wrap Composables with key, a movable group is generated. That will help to reorder any
of the calls without risk of losing the items’ identity.

Here is an example of how a Composable using key is transformed:

MovableGroup2 .kt

// Before compiler (sources)
@Composable
fun Test(value: Int) {
key(value) {
Wrapper {
Leaf("Value ${'$'}value")

// After
@Composable
fun Test(value: Int, %composer: Composer?, %changed: Int) {

/S

%composer .startMovableGroup(<>, value)

Wrapper (composablelLambda(%composer, <>, true) { %composer: Composer?, %changed: In\
t ->

Leaf("Value %value", %composer, Q)
}, %composer, 0b0110)

20
21
22

© 00 N O O b W N =

N O S = Y
O b W N -~ O

2. The Compose compiler 50

%composer . endMovableGroup()

Y/

Restartable groups

Restartable groups are the most interesting ones probably. Those are inserted only for restartable
Composable functions. They also wrap the corresponding Composable call, but on top of it, they
expand the end call a bit so it returns a nullable value value. This value will be null only when
the body of the Composable call doesn’t read any states that might vary, hence recomposition
will never be required. In that sense, there is no need to teach the runtime how to recompose this
Composable. Otherwise, if it returns a non-null value, the compiler generates a lambda that teaches
the runtime how to “restart” (re-execute) the Composable and therefore update the Composition.

This is how it looks in code:

RestartableGroup.kt

// Before compiler (sources)
@Composable fun A(x: Int) {
£(x)

// After compiler

@Composable

fun A(x: Int, $composer: Composer<*>, $changed: Int) {
$composer . startRestartGroup()
/7

f(x)

$composer .endRestartGroup()?.updateScope { next -»
A(x, next, $changed or 0b1)

}

See how the update scope for recomposition contains a new call to the same Composable.
This is the type of group generated for all Composable functions that read from a state.

Before wrapping this section I want to add some extra reasoning applied by the Compiler to
executable blocks found in order to generate the different types of groups. This was extracted from
the official docs:

« If a block executes exactly 1 time always, no groups are needed.

© 00 N O O b W N =

= =Y
© 00 N O O b Ww N =~ O

2. The Compose compiler 51

« If a set of blocks are such that exactly one of them is executed at once (for example, the result
blocks of an if statement, or a when clause), then we insert a replaceable group around each
block. We have conditional logic.

« A movable group is only needed for the content lambda of key calls.

Klib and decoy generation

There is specific support for .klib (multiplatform) and Kotlin/JS added to the Compose compiler. It
was needed due to how the IR for dependencies is deserialized in JS, since it will not be able to match
the type signatures once the IR is transformed —remember Compose adds extra synthetic parameters
to Composable function declarations and Composable function calls-.

For this matter, Compose avoids replacing the IR for functions in Kotlin/JS -as it does for JVM- and
creates copies instead. It will keep the original function declaration around to have a connection
between each function in the Kotlin metadata and its IR, and all references in code can still resolve
just fine, and then the IR for the copy will be tweaked by Compose as required. To differentiate both
at runtime a $composable suffix will be added to the name.

KlibAndDecoys.kt

// Before compiler (sources)
@Composable
fun Counter() {

// Transformed

@Decoy(...)

fun Counter() { // signature is kept the same
illegalDecoyCallException("Counter")

@DecoyImplementation(...)

fun Counter$composable(// signature is changed
$composer: Composer,
$changed: Int

) |

...transformed code. ..

If you want to dig more into this support for .klib and Kotlin/JS I recommend reading this
awesome post by Andrei Shikov*.

“https://dev.to/shikasd/kotlin- compiler-plugins-and-binaries- on- multiplatform-139e

https://dev.to/shikasd/kotlin-compiler-plugins-and-binaries-on-multiplatform-139e
https://dev.to/shikasd/kotlin-compiler-plugins-and-binaries-on-multiplatform-139e
https://dev.to/shikasd/kotlin-compiler-plugins-and-binaries-on-multiplatform-139e

3. The Compose runtime

Not long ago [tweeted a summary about how the Compose architecture works internally?, covering
the communication between the UL, the compiler, and the runtime.

€2 Jorge Castillo 7~
\” @JorgeCastilloPr

When thinking about Compose it's good to notice that
Composables don't yield actual Ul, but "emit" changes to
the in-memory structure managed by the runtime (slot
table) via the Composer.

That representation has to be interpreted later on to
"materialize" Ul from it [

Compose architecture tweet

This Twitter thread can work great as an intro for this chapter, since it gave a birdeye perspective
over some of the most important points we need to understand. This particular chapter is focused
on the Jetpack Compose runtime, but it will reinforce our mental mapping about how the different
parts of Compose communicate and work together. If you feel curious, I'd recommend reading the
Twitter thread before moving on.

This thread explained how Composable functions emit changes to the Composition, so the Compo-
sition can be updated with all the relevant information, and how that takes place via the current
injected $composer instance thanks to the compiler (see chapter 2). The call to obtain the current
Composer instance and the Composition itself are part of the Jetpack Compose runtime.

The thread intentionally stayed a bit over the surface, since Twitter is probably not be the best place
to dive deep into a topic like this one. This book is a very good chance to do it.

So far we have referenced the state maintained in memory by the runtime as “the Composition”.
That is an intentionally superficial concept. Let’s start by learning about the data structures used to
store and update the Composition state.

*https://twitter.com/JorgeCastilloPr/status/1390928660862017539

https://twitter.com/JorgeCastilloPr/status/1390928660862017539
https://twitter.com/JorgeCastilloPr/status/1390928660862017539

g b W N =

3. The Compose runtime 53

The slot table and the list of changes

Ive spotted some confusion floating around about the difference between these two data structures,
probably due to the current lack of literature about Compose internals. As of today, I consider it
necessary to clarify this first.

The slot table is an optimized in-memory structure that the runtime uses to store the current state
of the Composition. It is filled with data during initial composition, and gets updated with every
recomposition. We can think of it as a trace of all the Composable function calls, including their
location in sources, parameters, remembered values, CompositionLocals, and more. Everything that
has happened during composition is there. All this information is used later by the Composer to
produce the next list of changes, since any changes to the tree will always depend on the current
state of the Composition.

While the slot table records the state, the change list is what makes the actual changes to the node
tree. It can be understood as a patch file that once applied, it updates the tree. All the changes to
make need to be recorded, and then applied. Applying the changes on the list is a responsibility of
the Applier, which is an abstraction that the runtime relies on to ultimately materialize the tree. We
will get back to all this in deep detail later.

Finally, the Recomposer coordinates all this, deciding when and on what thread to recompose, and
when and on what thread to apply the changes. Also more on this later.

The slot table in depth

Let’s learn how the state of the Composition is stored. The slot table is a data structure optimized
for rapid linear access. It is based on the idea of a “gap buffer”, very common in text editors. It stores
the data in two linear arrays for that reason. One of these arrays keeps the information about the
groups available in the Composition, the other one stores the slots that belong to each group.

LinearStructures.kt

var groups = IntArray(Q)
private set

var slots = Array<Any?>(Q) { null }

private set

In chapter 2 we learned how the compiler wraps Composable functions bodies to make them emit
groups instead. Those groups will give identity to the Composable once it is stored in memory
(unique key), so that it can be identified later. Groups wrap all the relevant information for the
Composable call and its children, and provide information about how to treat the Composable (as
a group). Groups can have a different type depending on the control flow patterns found inside the

3. The Compose runtime 54

Composable body: Restartable groups, moveable groups, replaceable groups, reusable groups...

The groups array uses Int values since it will only store “group fields”, which represent meta-data
for the groups. Parent and child groups are stored in the form of group fields. Given it’s a linear
data structure, the group fields of a parent group will always come first, and the group fields of all
its children will follow. This is a linear way to model a group tree, and it favors a linear scan of
the children. Random access is expensive unless it is done through a group anchor. Anchors are like
pointers that exist for this reason.

In the other hand, the slots array stores the relevant data for each one of those groups. It stores
values of any type (Any?), since it is meant to store any type of information. This is where the actual
Composition data is stored. Each group stored in the groups array describes how to find and interpret
its slots in the slots array, since a group is always linked to a range of slots.

The slot table relies on a gap to read and write. Think of it as a range of positions from the table.
This gap moves around and determines where the data is read from and written to the arrays when
the time comes. The gap has a pointer to indicate where to start writing, and can shift its start and
end positions, so the data in the table can also be overwritten.

— EMPTY —

EMPTY

EMPTY — GAP

EMPTY

EMPTY —

Slot table image

Imagine some conditional logic like this one:

© 00 N O O b W N =

3. The Compose runtime 55

ConditionalNonRestartable.kt

@Composable
@NonRestartableComposable
fun ConditionalText() ({
if (a) {
Text(a)
} else {
Text(b)
}

Given this Composable is flagged as non-restartable, a replaceable group will be inserted (instead
of a restartable one). The group will store data in the table for the current “active” child. That will be
Text(a), in case a is true. When the condition toggles, the gap will move back to the start position
of the group, and it will start writing from there, overriding all those slots with the data for Text(b).

To read from and write to the table, we have SlotReader and Slotwriter. The slot table can
have multiple active readers but a single active writer. After each read or write operation, the
corresponding reader or writer gets closed. Any number of readers can be open, but the table can
only be read while it’s not being written, for safety. The SlotTable remains invalid until the
active writer is closed, since it will be modifying groups and slots directly and that could lead to
race conditions if we try to read from it at the same time.

A reader works as a visitor. It keeps track of the current group being read from the groups array, its
beginning and end positions, its parent (stored right before), the current slot from the group being
read, the amount of slots the group has... etc. The reader can reposition, skip groups, read the value
from the current slot, read values from specific indexes, and other things of the like. In other words,
it is used to read information about the groups and their slots from the arrays.

The writer, in the other hand, is used for writting groups and slots to the arrays. As explained above,
it can write data of any type —Any?— to the table. The SlotWriter relies on the gaps mentioned above
for groups and slots, so it uses them to determine where to write (positions) within the arrays.

Think of a gap as a slidable and resizable span of positions for a linear array. The writer keeps
track of the start and end positions, and length of each gap. It can move the gap around by updating
its start and end positions.

The writer is able to add, replace, move and remove groups and slots. Think of adding a new
Composable node to the tree, or Composables under conditional logics that might need to be replaced
when condition toggles, for instance.

The writer can skip groups and slots, advance by a given amount of positions, seek to a position
determined by an Anchor, and many other similar operations.

It keeps track of a list of Anchors pointing to specific indexes for rapid access through the table.
Position of each group —also called group index- in the table is also tracked via an Anchor. The

3. The Compose runtime 56

Anchor is updated when groups are moved, replaced, inserted, or removed before the position the
Anchor is pointing to.

The slot table also works as an iterator of composition groups, so it can provide information about
them to the tools so those are able to inspect and present details of the Composition.

Now it’s about time to learn about the change list.

For more details about the slot table, I recommend reading this post by Leland Richardson?from the
Jetpack Compose team.

*https://medium.com/androiddevelopers/under-the-hood- of-jetpack-compose- part- 2- of-2-37b2c20c6cdd

The list of changes

We have learned about the slot table, how it allows the runtime to keep track of the current state of
the Composition. Right, but what is the exact role of the list of changes then? when is it produced?
what does it model? when are those changes applied, and for what reason?. We still have quite a
few things to clarify. This section will be adding another piece to the puzzle. Let’s try to put things
in order.

Every time a composition (or recomposition) takes place, the Composable functions from our sources
are executed and emit. “Emitting”, we have used that word many times already. Emitting means
creating deferred changes to update the slot table, and ultimately also the materialized tree. Those
changes are stored as a list. Generating this fresh list of changes is based on what is already stored
in the slot table. Remember: Any changes to the tree must depend on the current state of the
Composition.

An example of this can be moving a node. Imagine reordering the Composables of a list. We need to
check where that node was placed before in the table, remove all those slots, and write them again
but starting from a new position.

In other words, every time a Composable emits it is looking at the slot table, creating a deferred
change according to the needs and the current information available, and adding it to a list with
all the changes. Later, when Composition is finished, it will be time for materialization, and those
recorded changes will effectively execute. That is when they effectively update the slot table with
the most fresh available information of the Composition. This process is what makes the emitting
process very fast: It simply creates a deferred action that will be waiting to be run.

Following this, we can see how change list is what ultimately makes the changes to the table. Right
after that, it will notify the Applier to update the materialized node tree.

https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose-part-2-of-2-37b2c20c6cdd
https://medium.com/androiddevelopers/under-the-hood-of-jetpack-compose-part-2-of-2-37b2c20c6cdd

O© 00 1 O O b W N =

10
11
12
13
14
15
16
17
18
19

3. The Compose runtime 57

As we said above, the Recomposer orchestrates this process and decides what thread to compose or
recompose on, and what thread to use for applying the changes from the list. The latter will also be
the default context used by LaunchedE ffect to run effects.

And with this, we have a clearer view on how changes are recorded, deferred, and ultimately
executed, and also how all the state is stored in the slot talbe. Now it is a good time to learn about
the Composer.

The Composer

The injected $composer is what connects the Composable functions we write to the Compose
runtime.

Feeding the Composer

Let’s explore how nodes are added to the in memory representation of the tree. We can use the Layout
Composable to drive the example. Layout is the plumbings of all the UI components provided by
Compose UL This is how it looks in code:

Layout.kt

@Suppress("ComposablelambdaParameterPosition")
@Composable inline fun Layout(
content: @Composable () -> Unit,
modifier: Modifier = Modifier,
measurePolicy: MeasurePolicy
) |
val density = LocalDensity.current
val layoutDirection = LocallLayoutDirection.current
ReusableComposeNode<ComposeUiNode, Applier<Any>>(
factory = ComposeUiNode.Constructor,
update = {
set(measurePolicy, ComposeUiNode.SetMeasurePolicy)
set(density, ComposeUiNode.SetDensity)
set(layoutDirection, ComposeUiNode.SetlayoutDirection)
},
skippableUpdate = materializerOf(modifier),
content = content

© 00 N O O b W N =

= =Y
© 00 N O O b W N =~ O

3. The Compose runtime 58

Layout uses ReusableComposeNode to emit a LayoutNode into the composition. But even if this might
sound like creating and adding the node right away, what it really does is teaching the runtime
how to create, initialize and insert the node at the current location in the Composition when the
time comes. Here is the code:

ReusableComposeNode.kt

@Composable

inline fun <T, reified E : Applier<*>> ReusableComposeNode(
noinline factory: () -> T,
update: @DisallowComposableCalls Updater<T>.() -> Unit,
noinline skippableUpdate: @Composable SkippableUpdater<T>.() -> Unit,
content: @Composable () -> Unit

) |
VA
currentComposer .startReusableNode()
VI
currentComposer .createNode(factory)
/)
Updater<T> (currentComposer) .update() // initialization
/7
currentComposer .startReplaceableGroup(0xTab4aae9)
content()
currentComposer .endReplaceableGroup()
currentComposer .endNode()

I'm omitting some not (yet) relevant parts, but note how it delegates everything to the
currentComposer instance. We can also see how it uses the chance to start a replaceable
group to wrap the content of this Composable when storing it. Any children emitted within
the content lambda will effectively be stored as children of this group (and therefore also the
Composable) in the Composition.

The same emitting operation is done for any other Composable functions. See remember for instance:

Composables. kt

@Composable
inline fun <T> remember(calculation: @DisallowComposableCalls () -> T): T =
currentComposer .cache(invalid = false, calculation)

The remember Composable function uses the currentComposer to cache (remember) the value
returned by the provided lambda into the composition. The invalid parameter forces an update
for the value regardles of it being previously stored. The cache function is coded like this:

© 00 N O O & W N =

.
(N

a o w N

3. The Compose runtime 59

Composer.kt

@ComposeCompilerApi
inline fun <T> Composer.cache(invalid: Boolean, block: () -> T): T {
return rememberedValue().let {
if (invalid || it === Composer.Empty) {
val value = block()
updateRememberedValue(value)
value
} else it
} as T

First, it searches for the value in the Composition (slot table). If it is not found, it will emit changes
to schedule an update for the value (or in other words, record). Otherwise, it will return the value
as is.

Modeling the Changes

As explained in the previous section, all the emitting operations delegated to the currentComposer
are internally modeled as Changes that are added to a list. A Change is a deferred function with access
to the current Applier and SlotWriter (remember there is a single active writter at a time). Let’s
have a look at it in code:

Composer.kt

internal typealias Change = (
applier: Applier<*>,
slots: SlotWriter,
rememberManager : RememberManager
) -> Unit

These changes are added to the list (recorded). The action of “emitting” essentially means creating
these Changes, which are deferred lambdas to potentially add, remove, replace, or move nodes from
the slot table, and consequently notify the Applier (so those changes can be materialized).

For this reason, whenever we talk about “emitting changes” we might also use the words “recording
changes” or “scheduling changes”. It’s all referring to the same thing.

After composition, once all the Composable function calls complete and all the changes are recorded,
all of them will be applied in a batch by the applier.

3. The Compose runtime 60

The composition itself is modeled with the Composition class. We are keeping that aside for now,
since we will learn about the composition process in detail in the sections to come later in this
chapter. Let’s learn a few more details about the Composer first.

Optimizing when to write

As we have learned above, inserting new nodes is delegated to the Composer. That means it always
knows when it is already immersed in the process of inserting new nodes into the composition.
When that is the case, the Composer can shortcut the process and start writing to the slot table right
away when changes are emitted, instead of recording them (adding them to the list to be interpreted
later). In other case, those changes are recorded and deferred, since it’s not the time to make them

yet.

Writing and reading groups

Once the Composition is done, composition.applyChanges() is finally called to materialize the tree,
and changes are written to the slot table. The Composer can write different types of information:
data, nodes, or groups. That said, all of them are ultimately stored in the form of groups for simplicity.
They just happen to have different group fields for differentiation.

The Composer can “start” and “end” any group. That has different meanings depending on the
actions being taken. If it is writing, it will stand for “group created” and “group removed” from the
slot table. If it is reading, the SlotReader will be asked to move its read pointers in an out of the
group to start or end reading from it.

Nodes on the Composable tree (ultimately groups in the table) are not only inserted, but can also be
removed, or moved. Removing a group means removing it and all its corresponding slots from the
table. To do this, the Composer asks to reposition the SlotReader accordingly and make it skip the
group (since it’s not there anymore), and record operations to remove all its nodes from the applier.
Any modification actions need to be scheduled (recorded) and applied later as a batch as explained
above, mostly to ensure they all make sense together. The Composer will also discard any pending
invalidations for the removed group, since they will not happen ever.

Not all groups are restartable, replaceable, movable, or reusable. Among other things that are also
stored as groups, we can find the defaults wrapper block. This block surrounds remembered values
for Composable calls necessary to produce default parameters: e.g: model: Model = remember {
DefaultModel() }. This is also stored as a very specific group.

3. The Compose runtime 61

When the Composer wants to start a group, the following things happen:

« If the composer is in the process of inserting values, it will go ahead and write to the slot
table while it is at it, since there is no reason to wait.

« In other case, if there are pending operations, it will record those changes to the applied when
applying changes. Here, the Composer will try to reuse the group in case it already exists (in
the table).

« When the group is already stored but in a different position (it has been moved), an operation
to move all the slots for the group is recorded.

« In case the group is new (not found in the table), it will move into inserting mode, which will
write the group and all its children to an intermediate insertTable (another SlotTable) until
the group is complete. That will schedule the groups to be inserted into the final table.

« Finally, if the Composer is not inserting and there are no pending write operations, it will try
to start reading the group.

Reusing groups is common. Sometimes it is not needed to create a new node, but we can reuse it
in case it already exists. (See ReusableComposeNode above). That will emit (record) the operation to
navigate to the node by the Applier, but will skip the operations to create and initialize it.

When a property of a node needs an update, that action is also recorded as a Change.

Remembering values

We learned how the Composer has the ability to remember values into the Composition (write them
to the slot table), and it can also update those values later on. The comparison to check if it changed
from last composition is done right when remember is called, but the update action is recorded as a
Change unless the Composer is already inserting.

When the value to update is a RememberObserver, then the Composer will also record an implicit
Change to track the remembering action in the Composition. That will be needed later when all those
remembered values need to be forgotten.

Recompose scopes

Something else that also happens via the Composer are the recompose scopes, which enable smart
recomposition. Those are directly linked to restart groups. Every time a restart group is created,
the Composer creates a RecomposeScope for it, and sets it as the currentRecomposeScope for the
Composition.

O© 00 I O O b W N =~

N
(N

3. The Compose runtime 62

A RecomposeScope models a region of the Composition that can be recomposed independently
of the rest of the Composition. It can be used to manually invalidate and trigger
recomposition of a Composable. An invalidation is requested via the composer, like:
composer . currentRecomposeScope() . invalidate(). For recomposing, the Composer will position
the slot table to the starting location of this group, and then call the recompose block passed to the
lambda. That will effectively invoke the Composable function again, which will emit one more
time, and therefore ask the Composer to override its existing data in the table.

The composer maintains a Stack of all the recompose scopes that have been invalidated. Meaning
they are pending to be recomposed, or in other words, need to be triggered in next recomposition.
The currentRecomposeScope is actually obtained by peeking into this Stack.

That said, RecomposeScopes are not always enabled. That only happens when Compose finds read
operations from State snapshots within the Composable. In that case, the Composer marks the
RecomposeScope as used, which makes the inserted “end” call at the end of the Composable not
return null anymore, and therefore activate the recomposition lambda that follows (see below, after
the ? character).

RecomposeScope.kt

// After compiler inserts boilerplate
@Composable
fun A(x: Int, $composer: Composer<*>, $changed: Int) {
$composer . startRestartGroup()
Y/
f(x)
$composer .endRestartGroup()?.updateScope { next -»>
A(x, next, $changed or 0bil)
}

The Composer can recompose all invalidated child groups of the current parent group when
recomposition is required, or simply make the reader skip the group to the end when it is not. (see:
comparison propagation section in chapter 2).

SideEffects in the Composer

The Composer is also able to record SideEffects. A SideEffect always runs after composition.
They are recorded as a function to call when changes to the corresponding tree are already applied.
They represent effects that happen on the side, so this type of effect is completely agnostic of
the Composable lifecycle. We'll not get things done like automatic cancellation when leaving the
Composition, neither retrying effects on recomposition. That is because this type of effect is not
stored in the slot table, and therefore simply discarded if composition fails. We’ll learn about this
and its purpose in the chapter about effect handlers. Still it is interesting to notice how they are
recorded via the Composer.

3. The Compose runtime 63

Storing CompositionLocals

The Composer also provides means to register CompositionLocals and obtain its values given a key.
CompositionLocal.current calls rely on it. A Provider and its values are also stored as a group in
the slot table, all together.

Storing source information

The Composer also stores source information in the form of CompositionData gathered during
Composition to be leveraged by Compose tools.

Linking Compositions via CompositionContext

There is not a single Composition but a tree of compositions and subcompositions. Subcompositions
are Compositions created inline with the only intention to construct a separate composition in the
context of the current one to support independent invalidation.

A Subcomposition is connected to its parent Composition with a parent CompositionContext
reference. This context exists to link Composition and subcompositions together as a tree. It ensures
that CompositionLocals and invalidations are transparently resolved / propagated down the tree as
if they belonged to a single Composition. CompositionContext itself is also written to the slot table
as a group.

Creating Subcompositions is usually done via rememberCompositionContext:

Composables .kt

@Composable fun rememberCompositionContext(): CompositionContext {
return currentComposer.buildContext()

}

This function remembers a new Composition at the current position in the slot table, or returns it in
case it’s already remembered. It is used to create a Subcomposition from places where separate
Composition is required, like the VectorPainter (see VectorPainter.kt snippet earlier in this
chapter), a Dialog, the SubcomposeLayout, a Popup, or the actual Androidview, which is a wrapper
to integrate Android Views into Composable trees.

Accessing the current State snapshot

The Composer has a reference to the current snapshot, as in a snapshot of the values return by
mutable states and other state objects for the current thread. All state object will have the same
value in the snapshot as they had when the snapshot was created unless they are explicitly changed
in the snapshot. this will be expanded in the chapter about state management.

O© 00 I O O b W N =

=Y
N \N]

3. The Compose runtime 64

Navigating the nodes

Navigation of the node tree is performed by the applier, but not directly. It is done by recording all
the locations of the nodes as they are traversed by the reader and recording them in a downNodes
array. When the node navigation is realized all the downs in the down nodes is played to the applier.
If an up is recorded before the corresponding down is realized then it is simply removed from the
downNodes stack, as a shortcut.

Keeping reader and writer in sync

This is a bit low level, but given groups can be inserted, deleted, or moved, the location of a group
in the writer might differ than its location in the reader for a while (until changes are applied). That
makes it needed to maintain a delta to track the difference. That delta is updated with inserts, deletes,
and moves, and reflects the “unrealized distance the writer must move to match the current slot in
the reader” per what the docs say.

Applying the changes

As we have mentioned many times in this chapter, the Applier is in charge to do this. The current
Composer delegates on this abstraction to apply all the recorded changes after the Composition. This
is what we know as “materializing”. This process executes the list of Changes and, as a result, it
updates the slot table and interprets the Composition data stored on it to effectively yield a result.

The runtime is agnostic of how the Applier is implemented. It relies on a public contract that
client libraries are expected to implement. That is because the Applier is an integration point with
the platform, so it will vary depending on the use case. This contract looks like this:

Applier.kt

interface Applier<N> {
val current: N
fun onBeginChanges() {}
fun onEndChanges() {}
fun down(node: N)
fun up()
fun insertTopDown(index: Int, instance: N)
fun insertBottomUp(index: Int, instance: N)
fun remove(index: Int, count: Int)
fun move(from: Int, to: Int, count: Int)
fun clear()

3. The Compose runtime 65

The first thing we see is the N type parameter in the contract declaration. That is the type for the
nodes we are applying. This is why compose can work with generic call graphs or node trees. It
is always agnostic of the type of nodes used. The Applier provides operations to traverse the tree,
insert, remove, or move nodes around, but it doesn’t care about the type of those nodes or how they
are ultimately inserted. Spoiler: That will be delegated to the nodes themselves.

The contract also defines how to remove all children in a given range from the current node, or
move children from the current node to change their positions. The clear operation defines how to
point to the root and remove all nodes from the tree, preparing both the Applier and its root to be
used as the target of a new composition in the future.

The Applier traverses the complete tree visiting and applying all nodes. The tree can be traversed
from top to bottom, or from bottom to top. It always keeps a reference of the current node it is
visiting and applying changes to. It has calls to begin and end applying changes that the Composer
will call before and after, and it provides means to insert top-down, or bottom-up, and to navigate
top-down (navigate to the child node of the current one), or bottom-up (navigate to the parent of
the current node).

Performance when building the node tree

There is an important difference between building the tree top-down or doing it bottom-up. I'll
extract this specific example from the official docs, since it is already pretty meaningful.

Inserting top-down

Consider the following tree:

P
®©

If we wanted to build this tree top-down, we would first insert B into R, then insert A into B, and
finally insert C into B. Le:

2 3

® ®

7 T

A AR
® ® ©

tree2

@-® -

Inserting bottom-up

A bottom-up building of the tree starts by inserting A and C into B, then inserting the B tree into R.

2

3
A R T
VAR
Performance for building a tree top-down versus bottom-up can vary considerably. That decision
is up to the Applier implementation used, and it usually relies on the number of nodes that need
to be notified every time a new child is inserted. Imagine that the graph we want to represent
with Compose requires notifying all ancestors of a node whenever it is inserted. In top to bottom,
each insertion could notify multiple nodes (parent, parent of its parent... etc). That count will grow

exponentially with each new level inserted. If it was bottom up instead, you’d always only notify the
direct parent, since the parent is still not attached to the tree. But this can be the other way around if

®-@ -

tree3

© 00 N O O b W N =

NN N NN NN NN RS R R R 1l s
© 0O 9 O O & W N~ OO © W 1 O U b Ww N =~ &

3. The Compose runtime

our strategy is notifying all children instead. So, always depends on the tree we are representing and
how changes need to be notified top or down the tree. The only key point here is pick one strategy

or the other for insertion, but never both.

How changes are applied

As we have described above, client libraries provide implementations for the Applier interface, one
example of this being the UiApplier, for Android UL We can use that one as a perfect example on
what “applying a node” means and how that yields components we can see on screen for this specific

use case.

If we look at the implementation, it is very narrow:

UiApplier.kt

internal class UiApplier(

)

root: LayoutNode
: AbstractApplier<LayoutNode> (root) {

override fun insertTopDown(index: Int, instance: LayoutNode) {

// Ignored.

override fun insertBottomUp(index: Int, instance: LayoutNode) ({

current.insertAt(index, instance)

override fun remove(index: Int, count: Int) {

current.removeAt(index, count)

override fun move(from: Int, to: Int, count: Int) {
current.move(from, to, count)

override fun onClear() {

root.removeAll()

override fun onEndChanges() ({

super .onEndChanges()

(root.owner as? AndroidComposeView)?.clearInvalidObservations()

3. The Compose runtime 68

The first thing we see is that the generic type N has been fixed to be LayoutNode. That is the type of
node that Compose UI has picked to represent the Ul nodes that will be rendered.

Next thing we notice is how it extends AbstractApplier. That is a default implementation that stores
the visited nodes in a Stack. Every time a new node is visited down the tree, it will add it to the stack,
and every time the visitor moves up, it’ll remove the last node visited from the top of the stack. This
is usually common across appliers, so it is likely a good idea to have it in a common parent class.

We also see how insertTopDown is ignored in the UiApplier, since insertions will be performed
bottom up in the case of Android. As we said above, it is important to pick one strategy or the other,
not both. In this case bottom-up will be more appropiate to avoid duplicate notifications when a
new child is inserted. This difference in terms of performance was explained earlier.

Methods to insert, remove, or move a node are all delegated to the node itself. LayoutNode is how
Compose Ul models a UI node, hence it knows everything about the parent node and its children.
Inserting a node means attaching it to its new parent in a given position (it can have multiple
children). Moving it is essentially reordering the list of children for its parent. Finally, removing
it simply means removing it from the list.

Whenever it is done applying the changes, it can call onEndChanges() that will delegate on the
root node owner for a final required action. —onBeginChanges() is always assumed to be called
before before applying changes, so onEndChanges() needs to be called in the end.— At this point, any
pending invalid observations are cleared. These are snapshot observations meant to automatically
re-invoke layout or draw when the values they read from and depend on have changed. Imagine
nodes being added, inserted, replaced, or moved, and how that can affect things like measuring or
layout.

Attaching and drawing the nodes

Once we got here we can finally answer the real question: How inserting a node on the tree (attaching
it to its parent) means we ultimately see it on screen? The answer is: The node knows how to draw
itself.

LayoutNode is the node type picked for this specific use case (Android UI). When the UiApplier
implementation delegates the insertion to it, things happen in the following order:

+ Check that the conditions for inserting the node are fulfilled —e.g: it doesn’t have a parent
already-.

« Add the child to the list of children it keeps, and update the list of sorted children. This is a
parallel list maintained for rapid sorting in the Z index.

« Attach the new node to its parent (Owner). Explained below.

3. The Compose runtime 69

The owner lives at the root of the tree, and implements the connection to the underlying view
system. We can think of it as a thin integration layer with Android. Actually, it is implemented by
AndroidComposeView, which is a View by itself. The owner connects to Android views and all layout,
draw, input, and accessibility is hooked through them. A LayoutNode must be attached to an Owner
in order the show up on screen, and its owner must be the same owner than the parent is attached
to. The owner is also part of Compose UL We’ll dig deeper into it in the next chapter.

LayoutNode LayoutNode

LayoutNode LayoutNode LayoutNode LayoutNode

Layout Node hierarchy

Some extra actions are taken when attaching the node:

« Check that it is not already attached or it is trying to get attached to a different owner than the
parent’s one. (Requirement explained above).

« Update semantics of the parent, since a new semantic node is being added to the semantic
tree. ~-We’ll learn about this in the following chapters, but imagine a parallel tree maintained
to describe our components and expose some specific information about them that will be
leveraged by things like accessibility services or UI tests—.

« Ask the owner to create a layer that knows how to draw the LayoutNode content using the
Compose UI Canvas. “The Compose UI Canvas is an abstraction that is implemented for
Android by wrapping the native Android Canvas and delegating to it.

« Given the owner is implemented by AndroidComposeView —an actual View—, it provides access
to all the View primitives, which are used for invalidation after the changes are made.

« Request remeasure to the owner and to the parent.

And profit! We finally know how Compose UI materializes a node tree for Android. The Applier
implementation will delegate that into the nodes, which know how to draw themselves to the Canvas
and perform required invalidations so changes are reflected on screen.

We have closed the cycle, but maybe a bit too early. So far we have gathered tons of interesting
details and we have a better picture of how things work around Composition, but what about the
Composition process itself?

© 00 N O O b W N =

NN
N O

3. The Compose runtime 70

Let’s go for it.

Composition

We’ve learned lots of interesting details about the Composer in the previous section. We know how
it records changes to write to or read from the slot table, how those changes are emitted when
Composable functions execute during the Composition, and how those recorded changes are applied
in the end. But truth is we didn’t give a word (yet) about who is in charge of creating a Composition,
how, when does it take place, or what steps are involved. Composition is our missing piece so far.

We've said that Composer has a reference to the Composition, but that could make us think that
the Composition is created and owned by the Composer, when it is actually the other way around.
When a Composition is created, it builds a Composer by itself. The Composer becomes accessible
via the currentComposer machinery, and it will be used to create and update the tree managed by
the Composition.

The entry point to the Jetpack Compose runtime by client libraries is split in two different parts:

« Writing Composable functions: That will make them emit all the relevant information, and
therefore connect our use case with the runtime.

« Composable functions are great but they’ll never execute without a Composition process.
That’s why another entry point is required: setContent. This is the integration layer with the
target platform, and a Composition is created and initiated here.

Creating a Composition

For Android for example, that can be a ViewGroup.setContent call, which returns a new

Composition:

Wrapper.android .kt

internal fun ViewGroup.setContent(
parent: CompositionContext,
content: @Composable () -> Unit
): Composition {
/S
val composeView = ...
return doSetContent(composeView, parent, content)

private fun doSetContent(
owner : AndroidComposeView,
parent: CompositionContext,

13
14
15
16
17
18
19
20
21
22
23

3. The Compose runtime 71

content: @Composable () -> Unit
): Composition {
Y
val original = Composition(UiApplier(owner.root), parent) // Here!
val wrapped = owner.view.getTag(R.id.wrapped_composition_tag)
as? WrappedComposition ?: WrappedComposition(owner, original).also {
owner .view.setTag(R.id.wrapped_composition_tag, it)
}
wrapped.setContent(content)
return wrapped

A WrappedComposition is a decorator that knows how to link a Composition to an
AndroidComposeView so it connects it directly to the Android View system. It starts controlled
effects to keep track of things like keyboard visibility changes or accessibility, and pipes information
about the Android Context that will be exposed to the Composition as CompositionLocals. (i.e: the
context itself, configuration, the current Li fecycleOwner, the current savedStateRegistryOwner, or
the owner’s view, among others). This is how all those things become implicitly available for all
our Composable functions.

Note how an instance of a UiApplier that starts pointing to the root LayoutNode of the tree is passed
to the Composition. (The Applier is a visitor for nodes, so it starts pointing to the root one). This is
the first time we explicitly see how it is the client library the one in charge to pick the implementation
for the Applier.

We <can also see how composition.setContent(content) is called in the end.
Composition#setContent is what sets the content of the Composition. (Updates the Composition
with all the information provided by content).

Another very good example of creating a Composition can be the VectorPainter, also part of
Compose Ul and used to paint vectors on screen. Vector painters create and maintain their own
Composition:

VectorPainter.kt

@Composable
internal fun RenderVector(

name: String,

viewportWidth: Float,

viewportHeight: Float,

content: @Composable (viewportWidth: Float, viewportHeight: Float) -> Unit
) o

/S

val composition = composeVector (rememberCompositionContext(), content)

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

3. The Compose runtime 72

DisposableEffect(composition) {
onDispose {

composition.dispose() // composition needs to be disposed in the end!

private fun composeVector (
parent: CompositionContext,
composable: @Composable (viewportWidth: Float, viewportHeight: Float) -> Unit
): Composition {
val existing = composition
val next = if (existing == null || existing.isDisposed) ({
Composition(VectorApplier(vector.root), parent) // Here!
} else {
existing
}
composition = next
next.setContent {
composable(vector.viewportWidth, vector.viewportHeight)

}

return next

We will explore this further in an upcoming chapter about advanced Jetpack Compose use cases, but
we can note here how a different Applier strategy is picked: a VectorApplier that starts pointing to
the root node in the vector tree, which in this case will be a VNode.

Finally, another example of this that we could also find in Compose Ul is the SubcomposeLayout,
which is a Layout that maintains its own Composition so it is able to subcompose its content during
the measuring phase. This can be useful when we need the measure of a parent for the composition
of its children.

Regardless of the use case, whenever a Composition is created, a parent CompositionContext can
be passed (see above). But note that it can be null. The parent context (if available) will be used to
link the new composition logically to an existing one, so that invalidations and CompositionLocals
can resolve across compositions as if they were the same one.

When creating a Composition it is also possible to pass a recompose context, which will be the
CoroutineContext used by the Applier for applying the changes and ultimately materialize the tree.
If not provided, it defaults to the one provided by the Recomposer, which is EmptyCoroutineContext.
That means Android will likely recompose on AndroidUiDispatcher.Main.

The same way a Composition is created, it must be disposed —i.e: composition.dispose() when it
is not needed anymore. That is when the UI (or alternative use cases) for it are disposed. We could

g b W N =

3. The Compose runtime 73

say that a Composition is scoped to its owner. Sometimes disposal might be a bit hidden, like in the
case of ViewGroup.setContent (behind a lifecycle observer), but it is always there.

The initial Composition process

Whenever a new Composition is created, a call to composition.setContent(content) always
follows (see the previous 2 snippets). That is in fact where the Composition is initially populated
(the slot table is filled up with relevant data).

This call is delegated to the parent Composition to trigger the initial Composition process (Remem-
ber how Compositions and Subcompositions are linked via a parent CompositionContext):

Composition.kt

override fun setContent(content: @Composable () -> Unit) {
/S
this.composable = content

parent.composelnitial(this, composable) // ‘this is the current Composition

For Subcompositions, the parent will be another Composition. For the root Composition, the parent
will be the Recomposer. But regardless of that, logics for performing the initial Composition will
always rely on the Recomposer in any case, since for Subcompositions, the composeInitial call
delegates to the parent over and over until it reaches the root Composition.

So the call to parent.composelnitial(composition, content) can be translated to
recomposer .composelnitial(composition, content), and it does a few important things
here to populate the initial Composition:

« Takes a snapshot of the current value of all the State objects. Those values will be isolated from
potential changes from other snapshots. This snapshot is mutable, but at the same time it is
concurrent safe. It can be modified safely without affecting any other existing State snapshots,
since any changes to any of its State objects will happen only for it, and it will atomically sync
all those changes with the global shared state in a later step.

« The State values from this mutable snapshot can only be modified from the block passed when
calling snapshot .enter(block: () -> T).

« When taking the snapshot, the Recomposer also passes observers for any reads or writes to
the mentioned State objects, so the Composition can be notified accordingly when those take
place. That allows the Composition to flag the affected recomposition scopes as used, which
will make them recompose when the time comes.

« Enters the snapshot -Le: snapshot.enter(block)- by passing the following block:
composition.composeContent(content). That is where the Composition actually takes
place. The action of entering is what lets the Recomposer know that any State objects read or
written during Composition will be tracked (notified to the Composition).

3. The Compose runtime 74

« The Composition process is delegated to the Composer. More on this step below this list.

 Once the Composition is done, any changes to State objects are made to the current State
snapshot only, so its time to propagate those changes to the global state. That happens via
snapshot.apply().

That is the rough order of things around the initial Composition. Everything regarding the State
snapshot system will be expanded with much more detail in the upcoming chapter about this topic.

Now, let’s elaborate the actual Composition process itself, delegated to the Composer. This is how
things happen in rough terms.

« Composition cannot be started if it’s already running. In that case an exception is thrown and
the new Composition is discarded. Reentrant Composition is not supported.

« If there are any pending invalidations, it will copy those to the invalidations list maintained
by the Composer for the RecomposeScopes pending to invalidate.

« Moves the flag isComposing to be true since Composition is about to start.

« Calls startRoot () to start the Composition, that will start the root group for the Composition
in the slot table and initialize other required fields and structures.

« Call startGroup to start a group for the content in the slot table.

« Invokes the content lambda so it emits all its changes.

« Calls endGroup to end the group in the slot table.

« Calls endroot () to end the Composition.

« Moves the flag isComposing to be false, since Composition is done.

« Clears other structures maintaining temporary data.

Applying changes after initial Composition

After the initial Composition, the Applier is notified to apply all the changes recorded during
the process: composition.applyChanges(). This is done via the Composition also, which calls
applier.onBeginChanges(), goes over the list of changes executing all of them and passing the
required Applier and SlotWriter instances to each change. Finally, after all changes are applied, it
calls applier.onEndChanges(). This is the natural process.

After this, dispatches all registered RememberedObservers, so any classes implementing the
RememberObserver contract can be notified when entering or leaving the Composition. Things
like LaunchedEffect or DisposableEffect implement it, so they can constrain the effect to the
Composable lifecycle within the Composition.

Right after, all SideEffects are triggered in the same order they were recorded.

3. The Compose runtime 75

Additional information about the Composition

A Composition is aware of its pending invalidations for recomposition. It also knows if it is currently
composing. This knowledge can be used to apply invalidations instantly (when it is), or defer them
otherwise. It can also be used by the Recomposer to discard recompositions when it is true.

The runtime relies on a variant of the Composition called ControlledComposition that adds a few
extra functions so it can be controlled from the outside. That way, the Recomposer can orchestrate
invalidations and further recomposition. Functions like composeContent or recompose are good
examples of this. The Recomposer can trigger those actions in the composition when needed.

The Composition provides means to detect if a set of objects are being observed by itself so to
enforce recomposition when those vary. For instance, this is used by the Recomposer to enforce
recomposition in a child composition when a CompositionLocal varies in a parent composition.
Remember Compositions are connected via parent CompositionContext for this matter.

Sometimes an error is found during composition, in that case it can be aborted, which is pretty much
like resetting the Composer and all its references / stacks and everything.

The composer assumes it is skipping recomposition when it is not inserting nor reusing, there are no
invalid providers (since that would require recomposition) and the currentRecomposeScope doesn’t
require recomposition. A chapter on smart recomposition is also coming up.

The Recomposer

We already know how the initial Composition takes place, and also learned a few things about
RecomposeScopes and invalidation. But we still know close to nothing regarding how the Recomposer
actually works. How is it created and when does it start running? How does it start listening for
invalidations to automatically trigger recomposition? Some questions likely arise.

The Recomposer controls the ControlledComposition, and it triggers recompositions when needed
to ultimately apply updates to it. It also determines what thread to compose or recompose on, and
what thread to use for applying the changes.

Let’s learn how to create a Recomposer and make it start awaiting for invalidations.

Spawning the Recomposer

The entry point to Jetpack Compose by client libraries is creating a Composition and calling
setContent over it —see section above: Creating a Composition—-. When creating the Composition
it is required to provide a parent for it. Given the parent of a root Composition is a Recomposer, this
is also the moment to create it.

© 00 N O O & W N =

[ENNEN
= O

3. The Compose runtime 76

This entry point is the connection between the platform and the Compose runtime, and it is code
provided by the client. In the case of Android, that is Compose UL This library creates a Composition
(which internally creates its own Composer), and a Recomposer to use as its parent.

Note that each potential use case for each platform is prone to create its own Composition as we
have learned before, and the same way, it will also likely create its own Recomposer.

When we want to use Compose on Android ViewGroups, we call ViewGroup.setContent which
ultimately, and after some indirections, delegates creating the parent context to a Recomposer
factory:

fun interface WindowRecomposerFactory {
fun createRecomposer (windowRootView: View): Recomposer

companion object {
val LifecycleAware: WindowRecomposerFactory = WindowRecomposerFactory { rootView\

rootView.createl ifecycleAwareViewTreeRecomposer ()

This factory creates a Recomposer for the current window. I find the creation process very interesting
to explore, since it provides many clues about how Android resolves the integration with Compose.

Passing a reference to the root view is needed for calling createRecomposer, since the created
Recomposer will be lifecycle-aware, meaning that it will be linked to the ViewTreel i fecycleOwner
at the root of the View hierarchy. This will allow to cancel (shutdown) the Recomposer when the
view tree is unattached, for instance, which is important to avoid leaking the recomposition process.
—This process is modeled as a suspended function that will otherwise leak.—

Infix for what it is coming below: In Compose U], all the things happening on UI are coordinated /
dispatched using the AndroidUiDispatcher, which for that reason is associated with a Choreographer
instance and a handler for the main Looper. This dispatcher performs event dispatch during the
handler callback or choreographer’s animation frame stage, whichever comes first. It also has
a MonotonicFrameClock associated that uses suspend to coordinate frame rendering. This is what
drives the whole UX in Compose, and things like animations depend a lot on it for achieving a
smooth experience in sync with the system frames.

3. The Compose runtime 77

First thing the factory function does is creating a PausableMonotonicFrameClock. This is a wrapper
over the AndroidUiDispatcher monotonic clock that adds support for manually pausing the dispatch
of withFrameNanos events until it is resumed. That makes it useful for cases where frames should
not be produced during specific periods of time, like when a Window hosting a UI is no longer
visible.

Any MonotonicFrameClock is also a CoroutineContext.Element, which means it can be combined
with other CoroutineContexts.

When insantiating the Recomposer, we must provide a CoroutineContext to it. This context is
created using a combination of the current thread context from the AndroiduiDispatcher and the
pausable frame clock just created.

WindowRecomposer.android

val contextWithClock = currentThreadContext + (pausableClock ?: EmptyCoroutineContex\
t)
val recomposer = Recomposer(effectCoroutineContext = contextWithClock)

This combined context will be used by the Recomposer to create an internal Job to ensure that all
composition or recomposition effects can be cancelled when shutting down the Recomposer. This
will be needed when an Android window is getting destroyed or unattached, for example. This
context will be the one used for applying changes after composition / recomposition, and will
also be the default context used by LaunchedEffect to run effects. ~That makes effects start in the
same thread we use to apply changes, which in Android is usually the main thread. Of course we
can always jump off the main thread at will within our effects.-

LaunchedEffect is an effect handler that will be explained in detail in the chapter about this topic.
All the effect handlers are Composable functions and therefore emit changes that are recorded.
LaunchedEffect is indeed recorded and written to the slot table when the time comes, so it is
Composition lifecycle aware, not like SideEffect.

Finally, a coroutine scope is created using the same combined context: i.e: val runRecomposeScope
= CoroutineScope(contextWithClock). This scope will be used to launch the recomposition job (a
suspend function), which will await for invalidations and trigger recompositions accordingly. Let’s
peek into the code and discuss some ideas about it.

© 00 N O O & W N =

NN NN NN R Ry sy sy
O b W0 N » 0 O 00 N O O b W N »~ O

3. The Compose runtime 78

WindowRecomposer.android.kt

viewTreelL ifecycleOwner.lifecycle.addObserver(
object : LifecycleEventObserver {
override fun onStateChanged(lifecycleOwner: LifecycleOwner, event: Lifecycle.Eve\

nt) {

val self = this

when (event) {
Lifecycle.Event.ON_CREATE ->
runRecomposeScope. launch(start = CoroutineStart.UNDISPATCHED) {
try {
recomposer . runRecomposeAndApplyChanges()
} finally ({
// After completion or cancellation

lifecycleOwner.lifecycle.removeObserver(self)

}
Lifecycle.Event.ON_START -> pausableClock?.resume()

Lifecycle.Event.ON_STOP -> pausableClock?.pause()
Lifecycle.Event.ON_DESTROY -> {

recomposer .cancel ()

Here is where the things happen. An observer is attached to the view tree lifecycle, and it will
use the pausable clock to resume and pause event dispatch when view tree is started and stopped,
respectively. It will also shutdown (cancel) the Recomposer on destroy, and launch the recomposition
job on create.

The recomposition job is started by recomposer.runRecomposeAndApplyChanges(), which is the
suspend function mentioned above that will await for the invalidation of any associated Composers
(and their RecomposeScopes), recompose them, and ultimately apply the new changes to their
associated Composition.

This factory is how Compose Ul spawns a Recomposer connected to the Android lifecycle. It works
nicely as an example of how the Recomposer is created at the integration point with the platform,
along with the Composition. As a refresher, here we can see again how the composition was created
when setting the content for ViewGroups:

© 00 N O O & W N =

NN N N P R R N L Ly s s
W N O © 0 N O O b Ww N =~ o

3. The Compose runtime 79

Wrapper.android.kt

internal fun ViewGroup.setContent(
parent: CompositionContext, // Recomposer is passed here!
content: @Composable () -> Unit
): Composition {
/S
val composeView = ...

return doSetContent(composeView, parent, content)

private fun doSetContent(
owner: AndroidComposeView,
parent: CompositionContext,
content: @Composable () -> Unit
): Composition {
/S
val original = Composition(UiApplier(owner.root), parent) // Here!
val wrapped = owner.view.getTag(R.id.wrapped_composition_tag)
as? WrappedComposition ?: WrappedComposition(owner, original).also {
owner.view.setTag(R.id.wrapped_composition_tag, it)
}
wrapped.setContent(content)
return wrapped

That parent there will be a Recomposer, and will be provided by the caller of setContent, that for
this use case it is the AbstractComposeView.

Recomposition process

The recomposer . runRecomposeAndApplyChanges() function is called to start awaiting for invalida-
tions and automatically recompose when those take place. Let’s learn the different steps involved.

On a previous section we learned how snapshot State is modified within its own snapshot, but later
those changes need to be propagated to the global state via snapshot . apply() for sync. When calling
recomposer . runRecomposeAndApplyChanges(), the first thing it does is registering an observer for
that change propagation. When that happens, this observer awakes and adds all those changes to a
list of snapshot invalidations that are propagated to all known composers so they can record what
parts of the composition need to be recomposed. In simple terms, this observer is a stepping stone
for triggering automatic recomposition when State changes.

After registering the snapshot apply observer, the Recomposer invalidates all Compositions to
assume everything has changed as a starting point. Any changes happening before this moment

3. The Compose runtime 80

have not been tracked, so this is a way to start from scratch. Then it suspends until there is work
available for recomposition. “Having work available” means having any pending State snapshot
invalidations, or any composition invalidations coming from RecomposeScopes.

The next thing the Recomposer does is using the monotonic clock provided when creating it, and
call parentFrameClock.withFrameNanos {} to await for the next frame. The rest of the work from
here will be performed at that time and not before. The intention is to coalesce changes to the frame.

Inside this block, the Recomposer dispatches the monotonic clock frames first for any potential
awaiters (like animations). That might yield new invalidations as a result that also need to be tracked
(e.g: toggling a conditional Composable when an animation ends).

And now it’s time for the real action. The Recomposer takes all the pending snapshot invalidations,
or in other words, all the State values modified since last call to recompose, and records all those
changes in the composer as pending recompositions.

There could also be invalidated Compositions —via composition.invalidate()—, for example when
a State is written in a Composable lambda—. For each one of those, the Recomposer performs
recomposition (a section on this below) and adds it to the list of Compositions with changes pending

to apply.

Recomposing means recalculating all the Changes necessary for the Composition state (slot table)
and the materialized tree (Applier), as we have learned. We have seen how that is done already
—see section: “The initial Composition process”-. Recomposition reuses all that code, so no point
on repeating all the steps that the process follows here.

Later, it finds potential trailing recompositions that need to be composed because of a value change
by a composition, and schedules them for recomposition also. This can happen for example if a
CompositionLocal changes in a parent and was read in a child composition that was otherwise
valid.

Finally, it goes over all the Compositions with changes to apply and calls composition.applyChanges()
on them. After that, it updates the Recomposer state.

Concurrent recomposition

The Recomposer has the ability to perform recompositions concurrently, even if Compose UI does
not make use of this feature. Any other client libraries could rely on it though, based on their needs.

The Recomposer provides a concurrent counterpart to the runRecomposeAndApplyChanges function
that is called runRecomposeConcurrentlyAndApplyChanges. This is another suspend function for
awaiting for State snapshot invalidations and triggering automatic recompositions like the former,
but with the only difference being that the latter will perform recomposition of invalidated
Compositions in a CoroutineContext provided from the outside:

o N O O b W N =

3. The Compose runtime 81

Recomposer.kt

suspend fun runRecomposeConcurrentlyAndApplyChanges(
recomposeCoroutineContext: CoroutineContext

y {7/ o5

This suspend function creates its own CoroutineScope using the passed context and uses it to spawn
and coordinate all the child jobs created for all the concurrent recompositions required.

Recomposer states

The Recomposer switches over a series of states during its lifespan:

Recomposer.kt

enum class State
ShutDown,
ShuttingDown,
Inactive,
InactivePendingWork,
Idle,
PendingWork

This has been extracted directly from the kdocs, and there is no point on rewording it. Here you
have what each one of those states means:

« ShutDown: Recomposer was cancelled and cleanup work completed. Cannot be used anymore.

« ShuttingDown: Recomposer was cancelled but it still in the middle of the cleanup process.
Cannot be used anymore.

+ Inactive: Recomposer will ignore invalidations from Composers and will not trigger recom-
position accordingly. runRecomposeAndApplyChanges has to be called to start listening. This is
the initial state of a Recomposer after creation.

« InactivePendingWork: There is the chance that the Recomposer is inactive but already has
some pending effects awaiting a frame. The frame will be produced as soon as the recomposer
starts running.

« Idle: Recomposer is tracking composition and snapshot invalidations, but there is currently no
work to do.

« PendingWork: Recomposer has been notified of pending work and is already performing it or
awaiting the opportunity to do it. (We already described what “pending work” means for the
Recomposer).

4. Compose Ul

To be written.

5. State snapshot system

Jetpack Compose has a particular way to represent state and propagate state changes which drives
the ultimate reactive experience: The state snapshot system. This reactive model enables our code
to be more powerful and concise, since it allows components to recompose automatically based on
their inputs and only when required, avoiding all the boilerplate we’d need if we had to notify those
changes manually (as we have been doing with the Android View system in the past).

Let’s start this chapter by introducing the term “snapshot state”.

What snapshot state is

Snapshot state refers to isolated state that can be remembered and observed for changes.
Snapshot state is what we get when calling functions like mutableStateOf, mutableStatelistOf,
mutableStateMapOf, derivedStateOf, produceState, collectAsState, or any of the like. All those
calls return some type of State, and devs frequently refer to it as snapshot state.

Snaphsot state is named like that since it is part of the state snapshot system defined by the Jetpack
Compose runtime. This system models and coordinates state changes and change propagation. It is
written in a decoupled way, so it could theoretically be used by other libraries that want to rely on
observable state.

Regarding change propagation, one of the things we learned in chapter 2 was that all Composable
declarations and expressions are wrapped by the Jetpack Compose compiler to automatically track
any snapshot state reads within their bodies. That is how snapshot state is (automatically) ob-
served. The goal is that every time the state the Composable reads varies, the runtime can invalidate
the Composable’s RecomposeScope, so it is executed again in next recomposition (recomposed).

This is infrastructure code provided by Compose that is therefore not needed in any client codebases.
Clients of the runtime like Compose UI can be completely agnostical of how invalidation and state
propagation is done, or how recomposition is triggered, and only focus on providing the building
blocks that work with that state: The Composable functions.

But snapshot state is not only about automatically notifying changes to trigger recomposition. The
word snapshot is part of the name for a very important reason: state isolation. That stands for the
level of isolation we apply in the context of concurrency.

Imagine handling mutable state across threads. It can rapidly become a mess. Strict coordination
and synchronization is required to ensure the state integrity, since it can be read and/or modified
from different threads at the same time. This opens the door to collisions, hard to detect bugs, and
race conditions.

BwWw N

5. State snapshot system 84

Traditionally, programming languages have dealt with this in different ways, one of them being
immutability. Immutable data can never be modified after created, which makes it completely safe in
concurrent scenarios. Another valid approach can be the actor system. This system focuses on state
isolation across threads. Actors keep their own copy of the state, and communication / coordination
is achieved via messages. There needs to exist some coordination to keep the global program state
coherent in case this state is mutable. The Compose snapshot system is not based on the actor system,
but it is actually closer to this approach.

Jetpack Compose leverages mutable state, so Composable functions can automatically react to state
updates. The library wouldn’t make sense with immutable state only. This means that it needs to
solve the problem of shared state in concurrent scenarios, since composition can be possible in
multiple threads (remember chapter 1). The Compose approach to this is the state snapshot system,
and it is based on state isolation and later change propagation to allow working with mutable state
safely across threads.

The snapshot state system is modeled using a concurrency control system®, since it needs to
coordinate state across threads in a safe manner. Shared mutable state in concurrent environments
is not an easy deal, and it is a generic problem agnostic of the actual use case for the library. We
are diving into concurrency control systems in detail and how Compose makes use of them in the
following section.

Before completing this introduction, it can be useful to peek into the State interface, which any
snapshot state object implements. Here is how it looks in code:

SnapshotState.kt

@Stable
interface State<out T> {

val value: T

This contract is flagged as @Stable, since Jetpack Compose provides and uses stable implementations
only (by design). Recapping a bit, this means that any implementation of this interface must ensure
that:

« The result of equals between two States is coherent: it always returns the same result when
comparing the same two instances.

« When a public property of the type changes (value), composition is notified.

« All its public property types are also stable (value).

These properties really represent what snapshot state is. In the following sections we will learn
how every time a snapshot state object is written (modified), Composition is notified, as one of the
mentioned rules require.

“https://en.wikipedia.org/wiki/Concurrency_control

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Concurrency_control

5. State snapshot system 85

Make sure to give a read to this post by Zach Klipp” introducing some of these ideas. I highly
recommend that post.

Let’s learn a bit about concurrency control systems now. It will help us a lot to easily understand
why the Jetpack Compose state snapshot system is modeled the way it is.

Concurrency control systems

The state snapshot system is implemented following a concurrency control system, so let’s introduce
this concept first.

In computer science, “concurrency control” is about ensuring correct results for concurrent opera-
tions, which means coordination and sinchronization. Concurrency control is represented by a series
of rules that ensure the correctness of the system as a whole. But this coordination always comes
with a cost. Coordination usually impacts performance, so the key challenge is to design an approach
that is as efficient as possible without significant drops in performance.

One example of concurrency control is the transaction system present in most of the database
management systems (DBMS) today. Concurrency control in this context ensures that any database
transactions performed in concurrent environments are done in a safe manner without violating
the data integrity of the database. The aim is to maintain correctness. The term “safety” here covers
things like ensuring that transactions are atomic, that they can be reverted safely, that no effect of a
comitted transaction is ever lost, and that no effect of an aborted transaction remains in the database.
It can be a complex problem to solve.

Concurrency control is not only frequent in DBMS but also in other scenarios like programming
languages, where it is used to implement transactional memory, for instance. That is actually the
use case for the state snapshot system. Transactional memory attempts to simplify concurrent
programming by allowing a group of load and store operations to execute in an atomic way. Actually,
in the Compose state snapshot system, state writes are applied as a single atomic operation when
state changes from a snapshot are propagated to other snapshots. Grouping operations like this
simplifies coordination between concurrent reads and writes of shared data in parallel systems /
processes. On top of this, atomic changes can be easily aborted, reverted, or reproduced. —I.e: having
history of reproducible changes to potentially reproduce any version of the program state.—

There are different categories of concurrency control systems:

« Optimistic: Do not block any reads or writes and be optimistic about those being safe, then
abort a transaction to prevent the violation if it will break the required rules when comitted.
An aborted transaction is immediately re-executed which implies an overhead. This one can
be a good strategy when the average amount of aborted transactions is not too high.

« Pessimistic: Block an operation from a transaction if it violates the rules, until the possibility
of violation disappears.

"https://dev.to/zachklipp/a-historical-introduction-to-the-compose-reactive-state-model- 198

https://dev.to/zachklipp/a-historical-introduction-to-the-compose-reactive-state-model-19j8
https://dev.to/zachklipp/a-historical-introduction-to-the-compose-reactive-state-model-19j8

5. State snapshot system 86

« Semi-optimistic: This is a mix of the other two, a hybrid solution. Block operations only in
some situations and be optimistic (then abort on commit) for others.

Performance for each category can differ based on factors like the average transaction completion
rates (throughput), level of parallelism required, and other factors like the possibility of deadlocks.
Non-optimistic categories are considerably more prone to deadlocks, which are often resolved by
aborting a stalled transaction (hence release the others) and restarting it as soon as possible.

Jetpack Compose is optimistic. State update collisions are only reported when propagating the
changes (in the end), and then they are tried to be merged automatically or discarded (changes
aborted) otherwise. More on this later.

The Jetpack Compose approach to concurrency control systems is simpler to the ones we can find
on DBMS for example. It is only used to maintain correctness. Other features that can be found in
database transactions like being recoverable, durable, distributed or replicated are not true for the
Compose state snapshot system. (They don’t have the “D” part of “ACID?*”). Even though, Compose
snapshots are in-memory, in-process only. They are atomic, consistent, and isolated.

In conjunction with the different categories of concurrency control listed (optimistic, pessimistic,
semi-optimistic), there are some types that can also be used, one of them being the Multiversion
concurrency control (MVCC): That is the one Jetpack Compose uses to implement the state
snapshot system. This system increases concurrency and performance by generating a new version
of a database object each time it is written. It also allows reading the serveral last relevant
versions of the object.

Let’s describe this in depth and also explain its purpose.

Multiversion concurrency control (MCC or MVCC)

The Compose global state is shared across Compositions, which also means threads. Composable
functions should be able to run concurrently (the door for parallel recomposition is always open).
If they execute in parallel, they can read or modify snapshot state concurrently, so state isolation is
going to be needed.

One of the main properties of concurrency control is actually isolation. This property ensures
correctness in scenarios of concurrent access to data. The simplest way to achieve isolation is to
block all readers until writers are done, but that can be awful in terms of performance. MVCC (and
therefore Compose) does better than that.

To achieve isolation, MVCC keeps multiple copies of the data (snapshots), so each thread can work
with an isolated snapshot of the state at a given instant. We can understand those as different
versions of the state (“multiversion”). Modifications done by a thread remain invisible to other
threads until all the local changes are completed and propagated.

®https://en.wikipedia.org/wiki/ ACID

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID

5. State snapshot system 87

In a concurrency control system this technique is called “snapshot isolation”, and it is defined as the
isolation level used to determine which version each “transaction” (snapshot in this use case) sees.

MVCC also levereages immutability, so whenever data is written a new copy of the data is created,
instead of modifying the original one. This leads to having multiple versions of the same data
stored in memory, like a history of all the changes over the object. In Compose these are called
“state records”, and we are going over those in detail in a few sections.

Another particularity of MVCC is that it creates point-in-time consistent views of the state. This
is usually a property of backup files, and means that all references to objects on a given backup
stay coherent. In MVCC, this is often ensured via a transaction ID, so any read can reference the
corresponding ID to determine what version of the state to use. That is actually how it works in
Jetpack Compose. Each snapshot is assigned its own ID. Snapshot ids are monotonically increasing
value, so it makes snapshots naturally ordered. Since snapshots are differentiated by their IDs, reads
and writes are isolated from each other without the need for locking.

Now that we have an idea of why a concurrency control system is needed, and how Multiversion
concurrency control works, it is a great time to dive into the internals of the state snapshot system.

If you want to dive deeper into concurrency control systems or MVCC, I highly recommend reading
more about Concurrency control?and Multiversion concurrency control”.

*https://en.wikipedia.org/wiki/Concurrency_control
*https://en.wikipedia.org/wiki/Multiversion_concurrency_control

The Snapshot

A snapshot can be taken at any point in time. It reflects the current state of the program (all the
snapshot state objects) at a given instant (when the snapshot is taken). Multiple snapshots can be
taken, and all of them will receive their own isolated copy of the program state. That is, a copy
of the current state of all the snapshot state objects at that point in time. (Objects implementing the
State interface).

This approach makes state safe for modification, since updating a state object in one of the snapshots
will not affect another copies of the same state object in others. Snapshots are isolated from each
other. In a concurrent scenario with multiple threads, each thread would point to a different snapshot
and therefore a different copy of the state.

The Jetpack Compose runtime provides the Snapshot class to model the current state of the program.
Any code that wants to take a Snapshot just needs to call the static method for it: val snapshot =

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control

© 00 N O O b W N =

N O S =Y
O b W N =~ O

5. State snapshot system 88

Snapshot . takeSnapshot (). This will take a snapshot of the current value of all the state objects, and
those values will be preserved until snapshot.dispose() is called. That will determine the lifespan
of the snapshot.

Snapshots have a lifecycle. Whenever we are done using a snapshot, it needs to be disposed. If we
don’t call snapshot.dispose() we will be leaking all the resources associated with the snapshot,
along with its retained state. A snapshot is considered active between the created and disposed
states.

When a snapshot is taken it is given an ID so all the state on it can be easily differentiated from other
potential versions of the same state retained by other snapshots. That allows to version the program
state, or in other words, keep the program state coherent according to a version (multiversion
concurrency control).

The best way to understand how Snapshots work is by code. 'm going to extract a snippet directly
from this really didactic and detailed post by Zach Klipp® for this matter:

SnapshotSample.kt

fun main() {
val dog = Dog()
dog.name.value = "Spot"
val snapshot = Snapshot.takeSnapshot()
dog.name.value = "Fido"

println(dog.name.value)
snapshot.enter { println(dog.name.value) }

println(dog.name.value)

// Output:
Fido
Spot
Fido

The enter function, also commonly referred to as “entering the snapshot”, runs a lambda in the
context of the snapshot, so the snapshot becomes its source of truth for any state: All the state
read from the lambda will get its values from the snapshot. This mechanism allows Compose and
any other client libraries to run any piece of logic that works with state in the context of a given
snapshot. This happens locally in the thread, and until the call to enter returns. Any other threads
remain completely unaffected.

In the example above we can see how the dog name is “Fido” after updating it, but if we read it
from the context of the snapshot (enter call), it returns “Spot”, which is the value it had when the
snapshot was taken.

*https://dev.to/zachklipp/introduction- to- the-compose- snapshot-system- 19cn

https://dev.to/zachklipp/introduction-to-the-compose-snapshot-system-19cn
https://dev.to/zachklipp/introduction-to-the-compose-snapshot-system-19cn

o N O O b W N =

5. State snapshot system 89

Note that inside enter it is possible to read and write state, depending on the type of the snapshot
we are using (read-only vs mutable). We will go over mutable snapshots later.

The snapshot you create via Snapshot . takeSnapshot () is a read-only one. Any state it holds cannot
be modified. If we try to write to any state object in the snapshot, an exception will be thrown.

But not everything will be reading state, we might also need to update it (write). Compose
provides a specific implementation of the Snapshot contract that allows mutating the state it holds:
MutableSnapshot. On top of that, there are also other additional implementations available. Here
we have a collapsed view of all the different types:

Snapshot.kt

sealed class Snapshot(...) {
class ReadonlySnapshot(...) : Snapshot() {...}
class NestedReadonlySnapshot(...) : Snapshot() {...}
open class MutableSnapshot(...) : Snapshot() {...}
class NestedMutableSnapshot(...) : MutableSnapshot() {...}
class GlobalSnapshot(...) : MutableSnapshot() {...}
class TransparentObserverMutableSnapshot(...) : MutableSnapshot() {...}

Let’s go over the different types very briefly:

ReadonlySnapshot: Snapshot state objects held by it cannot be modified, only read.
MutableSnapshot: Snapshot state objects held by it can be read and modified.
NestedReadonlySnapshot and NestedMutableSnapshot: Child read-only and mutable snap-
shots, since snapshots form a tree. A snapshot can have any number of nested snapshots. More
on this later.

GlobalSnapshot: Mutable snapshot that holds the global (shared) program state. It is effectively
the ultimate root of all snapshots.

TransparentObserverMutableSnapshot: This one is a special case. It does not apply any state
isolation, and exists only to notify read and write observers whenever a state object is read
/ written. All state records on it are automatically flagged as invalid, so they are not be
visible/readable by any other snapshot. The ID of this type of snapshot is always the one of
its parent, so any records created for it are actually associated with the parent instead. It is
“transparent” in the sense that all operations performed on it are as if they were performed in
the parent snapshot.

5. State snapshot system 90

The snapshot tree

As we explained above, snapshots form a tree. Among the different snapshot types we can find
NestedReadonlySnapshot and NestedMutableSnapshot for this reason. Any snapshot can contain
any number of nested snapshots. The root of the tree is the GlobalSnapshot, holding the global

state.
GlobalSnapshot

NestedMutableSnapshot(2) NestedMutableSnapshot(3) NestedMutableSnapshot(4) NestedMutableSnapshot(5)

Snapshot tree

Nested snapshots are like independent copies of the snapshot that can be disposed independently.
That allows to dipose it while keeping the parent snapshot active. They are frequent in Compose
when we are dealing with subcomposition, for instance.

Short flashback to chapter 2. we described that subcompositions are compositions created inline
(within the parent composition) with the only intention to support independent invalidation.
Compositions and subcompositions are also connected as a tree.

Some examples of subcomposition where a nested snapshot is created are when a lazy list item or a
BoxWithConstraints are composed. We can also find subcomposition in SubcomposeLayout, or the
VectorPainter for example (see examples from chapter 2).

When subcomposition is needed, a nested snapshot is created to store and isolate its state, so the
snapshot can be disposed when subcomposition is gone, while keeping the parent composition and
parent snapshot alive. If any changes take place to the nested snapshot, those are propagated to the
parent.

All the snapshot types provide a function to take a nested snapshot and attach it to the parent. Le:
Snapshot#takeNestedSnapshot (), or MutableSnapshot#takeNestedMutableSnapshot().

A child read-only snapshot can be produced from any snapshot type. A mutable snapshot can only
be produced from another mutable snapshot (or from the global snapshot which can be thought of
as a mutable snapshot).

a s W N

5. State snapshot system 91

Snapshots and threading

It is important to think of snapshots as separate structures that live outside of the scope of any thread.
A thread can indeed have a current snapshot, but snapshots are not necessarily bound to a thread.
A thread can enter and leave a snapshot arbitrarily, and a child snapshot can be entered by a separate
thread. Actually, parallel work is one of the intended use cases for snapshots. Several child threads
can be spawned, each with their own snapshot.

Once we define mutable snapshots, we’ll also learn how child snapshots must notify their changes to
the parent to keep coherence. Changes on all threads will be isolated from each other, and colliding
updates by different threads will be detected and addressed (more on this later). Nested snapshots
allow such a break-down of work to be recursive. All this potentially unlocks features like parallel
composition.

It is always possible to retrieve the current snapshot for a thread via Snapshot.current. That will
return the current thread snapshot if there is one, or the global snapshot (holding the global state)
in other case.

Observing reads and writes

The Compose runtime has the ability to trigger recomposition when state that is observed is written.
It would be nice to understand how that machinery, that we already described in previous chapters,
is connected to the state snapshot system. Let’s go for it, but let’s start by learning how to observe
reads first.

Whenever take a snapshot (i.e: Snapshot.takeSnapshot()), what we get in return is a
ReadonlySnapshot. Since the state objects from this snapshot cannot be modified, only read,
all the state in the snapshot will be preserved until it gets diposed. The takeSnapshot function
allows us to pass a readObserver (as an optional parameter). This observer will be notified every
time any state object is read from the snapshot within the enter call:

ReadOnlySnapshot.kt

// simple observer to track the total number of reads
val snapshot = Snapshot.takeSnapshot { reads++ }
Y72

snapshot.enter { /* some state reads */ }

VZane

One example of this can be the snapshotFlow function: fun <T> snapshotFlow(block: () -> T):
Flow<T>. This function converts State<T> objects into a Flow. When collected, it runs its block and
emits the result of the State objects read in it. When one of the State objects read mutates, the Flow
emits the new value to its collector. To achieve this behavior, it needs to record all the state reads so
it can reexecute the block whenever any of those state objects change. To keep track of the reads, it
takes a read-only snapshot and passes a read observer so it can store them in a Set:

O O B W N =

O 00 I O O b W N =

T =Y
O O B W N~

17
18
19
20

5. State snapshot system 92

SnapshotFlow .kt

fun <T> snapshotFlow(block: () -> T): Flow<T> {
/S
snapshot . takeSnapshot { readSet.add(it) }
/S
// Do something with the Set

Read-only snasphots not only notify their read readObserver when some state is read, but also their
parent’s readObserver. A read on a nested snapshot must be visible to all the parents and their
observers, so all the observers on the snapshot tree are notified accordingly.

Let’s go for observing writes now.

Observers are also possible for writes (state updates), so writeObserver can only be passed when
creating a mutable snapshot. A mutable snapshot is a snapshot that allows to modify the state it
holds. We can take one by calling Snapshot . takeMutableSnapshot (). Here, we are allowed to pass
optional read and write observers to get notified about any reads and/or writes.

A good example of observing reads and writes can be the Recomposer, which is able to track any
reads and writes into the Composition, to automatically trigger recomposition when required. Here
it is:

Recomposer.kt

private fun readObserverOf(composition: ControlledComposition): (Any) -> Unit {

return { value -> composition.recordReadOf(value) } // recording reads

private fun writeObserverOf(
composition: ControlledComposition,
modifiedValues: IdentityArraySet<Any>?
): (Any) -> Unit {
return { value -»
composition.recordWriteOf(value) // recording writes
modifiedValues?.add(value)

private inline fun <T> composing(
composition: ControlledComposition,
modifiedValues: IdentityArraySet<Any>?,
block: () -> T

)i T
val snapshot = Snapshot.takeMutableSnapshot(

21
22
23
24
25
26
27
28
29

5. State snapshot system 93

readObserverOf(composition),
writeObserverOf(composition, modifiedValues)
)
try {
return snapshot.enter(block)
} finally {
applyAndCheck (snapshot)

The composing function is called both when creating the initial Composition and for every
recomposition. This logic relies on a MutableSnapshot that allows state to be not only read but
also written, and any reads or writes in the block are tracked by (notified to) the Composition. (See
the enter call).

The block passed to it will essentially be the code that runs the composition or recomposition itself,
and therefore executes all Composable functions on the tree to calculate the list of changes. Since
that happens inside the enter function, that will make any reads or writes automatically tracked.

Every time a snapshot state write is tracked into the composition, the corresponding
RecomposeScopes reading the very same snapshot state will be invalidated and recomposition
will trigger.

The applyAndCheck(snapshot) call in the end propagates any changes happening during the
composition to other snapshots and the global state.

This is how observers look in code, they are simple functions:

ReadAndWriteObservers.kt

readObserver: ((Any) -> Unit)?
writeObserver: ((Any) -> Unit)?

There is some utility function to start observing reads and writes in the current thread. That
is Snapshot.observe(readObserver, writeObserver, block). This function is used by
derivedStateOf to react to all object reads from the provided block, for instance. This is the
only place where the TransparentObserverMutableSnapshot is used (one of the Snapshot types
available). A parent (root) snapshot of this type is created with the only purpose of notifying reads
to observers, as explained in previous sections. This type was added by the team to avoid having to
have a list of callbacks in the snapshot for a special case.

MutableSnapshots

We have talked much about state updates (writes), but we didn’t really go in detail about mutable
snapshots yet. Let’s do it now without further ado.

o N O O b W N =

5. State snapshot system 94

MutableSnapshot is the snapshot type used when working with mutable snapshot state where we
need to track writes to automatically trigger recomposition.

In a mutable snapshot, any state object will have the same value as it had when the snapshot was
taken, unless it is locally changed in the snapshot. All changes made in a MutableSnapshot are
isolated from the changes done by other snapshots. Changes propagate from bottom to top on the
tree. A child nested mutable snapshot needs to apply its changes first, and then propagate those
to the parent or to the global snapshot in case it is the root of the tree. That is done by calling
NestedMutableSnapshot#apply (or MutableSnapshot#apply if it is not nested).

Propagating from bottom to top ensures that changes will reach the global state only when the root
snapshot is applied, which can only happen after all the nested snapshots have been already applied.

The following paragraph is extracted directly from the Jetpack Compose runtime kdocs:

Composition uses mutable snapshots to allow changes made in Composable functions to be tem-
porarily isolated from the global state and is later applied to the global state when the composition
is applied. If MutableSnapshot.apply fails applying this snapshot, the snapshot and the changes
calculated during composition are disposed and a new composition is scheduled to be calculated
again.

So, when applying the Composition (rapid flashback: we apply changes via the Applier as the last
step in the composition), any changes in mutable snapshots are applied and notified to their parents,
or ultimately the global snapshot (program state). If there is a failure when applying these changes,
a new composition is scheduled.

A mutable snapshot also has a lifecycle. It always ends by calling apply and/or dispose. That is
required both to propagate state modifications to other snapshots, and to avoid leaks.

Changes propagated via apply are applied atomically, meaning that the global state or the parent
snapshot (in case its nested) will see all those changes as a single atomic change. That will clean
the history of state changes a bit so it is easier to identify, reproduce, abort, or revert. Remember this
is what Transactional memory is about, as we described when learning about Concurrency control
systems.

If a mutable snapshot is disposed but never applied, all its pending state changes are discarded.

Here is a practical example of how apply works in client code:

ApplyMutableSnapshotSample kt

class Address ({
var streetname: MutableState<String> = mutableStateOf("")

}

fun main() {
val address = Address()

address.streetname.value = "Some street”

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

© 00 N O O & W N =

(RN
= O

5. State snapshot system 95

val snapshot = Snapshot.takeMutableSnapshot()
println(address.streetname.value)
snapshot.enter {
address.streetname.value = "Another street™
println(address.streetname.value)
}
println(address.streetname.value)
snapshot.apply()
println(address.streetname.value)

// This prints the following:

// Some street
// Another street
// Some street
// Another street

When we print from within the enter call, the value is “Another street”, so the modification is visible.
That is because we are running in the context of the snapshot. But if we print right after theenter call
(outside), the value seems reverted to the original one. That is because changes in a MutableSnapshot
are isolated from any other snapshots. After calling apply, changes are propagated, and then we can
see how printing the streetname again finally prints the modified value.

Note that only state updates done within the enter call will be tracked and propagated.

There is also the alternative syntax: Snapshot .withMutableSnapshot to shortcut this pattern. It will
ensure that apply is called in the end.

fun main() {
val address = Address()
address.streetname.value = "Some street”

Snapshot.withMutableSnapshot {
println(address.streetname.value)
address.streetname.value = "Another street"
println(address.streetname.value)

}

println(address.streetname.value)

5. State snapshot system 96

The way apply is called in the end might remind us of how a list of changes is also recorded and
applied later by the Composer —see chapter 3—. It is the same concept once again. Whenever we need
to make sense of a list of changes on a tree all together, there is a need to record/defer those, so we
can apply (trigger) them in the correct order and impose coherence at that moment. That is the only
time when the program knows about all the changes, or in other words, when it has the big picture.

It is also possible to register apply observers to oberve the ultimate modification changes. That is
done via Snapshot . registerApplyObserver.

GlobalSnapshot and nested snapshots

The GlobalSnapshot is a type of mutable snapshot that happens to hold the global state. It will get
updates coming from other snapshots following the bottom to top order described above.

A GlobalSnapshot cannot be nested. There is only one GlobalSnapshot and it is effectively the
ultimate root of all snapshots. It holds the current gobal (shared) state. For this reason, a global
snapshot can’t be applied (it has no apply call).

To apply changes in the global snapshot, it must be “advanced”. That is done by calling
Snapshot . advanceGlobalSnapshot (), which clears the previous global snapshot and creates a new
one, that accepts all the valid state from the previous one. Apply observers are also notified in this
case, since those changes are effectively “applied”, even if the mechanism is different. The same
way, it is also not possible to call dispose() on it. Disposing a global snapshot is also done by
advancing it.

In Jetpack Compose, the global snapshot is created during initialization of the snapshot system. In
JVM this happens when SnapshotKt .class is initialized by Java or the Android runtime.

After this, the global snapshot manager is started when creating the Composer, and then each
composition (including initial composition and any further recompositions) creates its own nested
mutable snapshot and attaches it to the tree, so it can store and isolate all the state for the composition.
Compositions will also use this chance to register read and write observers to track reads and writes
into the Composition. Remember the composing function:

© 00 N O O & W N =

I S =
O O b W N =~ O

5. State snapshot system 97

Recomposer.kt

// Called for the initial composition and also for every recomposition.
private inline fun <T> composing(
composition: ControlledComposition,
modifiedValues: IdentityArraySet<Any>?,
block: () -> T
)i T
val snapshot = Snapshot.takeMutableSnapshot(
readObserverQOf(composition),
writeObserverOf(composition, modifiedValues)
)

try {
return snapshot.enter(block)

} finally {
applyAndCheck (snhapshot)

Finally, any subcomposition can create its own nested snapshot and attach it to the tree, to support
invalidation while keeping the parent active. That would give us a complete picture of how a
snapshot tree can look.

Another interesting detail to share is that, when the Composer is created, right when creating
the Composition, a call to GlobalSnapshotManager .ensureStarted() is done. That is paﬂ:ofthe
integration with the platform (Compose Ul), and it will start observing all writes to the global state
and schedule periodic dispatch of the snapshot apply notifications in the AndroidUiDispatcher.Main
context.

StateObjects and StateRecords

Multiversion concurrency control ensures that every time state is written, a new version of it is
created (copy-on-write). The Jetpack Compose state snapshot system complies with this, so it is
possible to end up with multiple versions of the same snapshot state object stored.

This design is important for performance to three ways. First, the cost of creating a snapshot is O(1),
not O(N) (where N would be the number of state objects). Second, the cost of comitting a snapshot
is O(N), where N is the number of objects mutated in the snapshot. Third, snapshots do not have
a list of snapshot data anywhere (only a transitory list of modified objects) so state objects can be
collected by the garbage collector freely without the Snapshot system having to be notified.

Internally, a snapshot state object is modeled as a StateOb ject, and each one of the multiple versions
stored for that object is a StateRecord. Every record holds the data for a single version of the

5. State snapshot system 98

state. The version (record) that each snapshot sees corresponds to the most up to date valid version
available when the snapshot was taken. (The valid one with the highest snapshot ID).

StateObject

val firstStateRecord

2
StateRecord(a) —) StateRecord(a’) —) StateRecord(a”)

StateObject and StateRecords

But what makes a state record valid?

Well, “valid” is always relative to a particular snapshot. Records are associated with the ID of the
snapshot in which the record was created. A state record is considered valid for a snapshot if its
recorded ID is less than or equal to the snapshot id (that is, created in the current or a previous
snapshot), and not part of the snapshot’s invalid set, or specifically flagged as invalid. Any valid
records from a previous snapshot are automatically copied to the new one.

Which leads to the question: what makes a record be part of the mentioned invalid set or explicitly
flagged as invalid?

« Records created after the current snapshot are considered invalid, since the snapshot they were
created for was taken after this snapshot.

« Records created for a snapshot that was already open at the time this snapshot was created are
added to the invalid set, so they are also considered invalid.

« Records created in a snapshot that was disposed before it was applied are explicitly flagged as
invalid, also.

An invalid record is a record that is not visible by any snaphot, thus it cannot be read. When a
snapshot state is read from a Composable function, that record will not be taken into account to
return its most up to date valid state.

Back to the state objects. Here is a brief example of how they are modeled in the state snapshot
system:

5. State snapshot system 99

Snapshot.kt

interface StateObject {
val firstStateRecord: StateRecord

fun prependStateRecord(value: StateRecord)

fun mergeRecords(
previous: StateRecord,
current: StateRecord,
applied: StateRecord

): StateRecord? = null

Any mutable snapshot state object created by any means will implement this interface. Some
examples are the state returned by the mutableStateOf, mutableStatelListOf, or derivedStateOf
runtime functions, among others.

Let’s dive into the mutableStateOf(value) function as an exercise.

SnapshotState .kt

fun <T> mutableStateOf(

value: T,

policy: SnapshotMutationPolicy<T> = structuralEqualityPolicy()
): MutableState<T> = createSnapshotMutableState(value, policy)

This call returns an instance of SnapshotMutableState, which is essentially an observable mutable
state, or in other words, a state that can be updated and will automatically notify observers about it.
This class is a StateOb ject, and for that reason it maintains a linked list of records storing different
versions of the state (value in this case). Each time the state is read, the list of records is traversed
to find and return the most recent valid one.

SnapshotMutableState(value)

val firstStateRecord

N2

StateRecord(value) —) StateRecord(value’) —) StateRecord(value”)

mutableStateOf

© 00 1 O O b W N =

5. State snapshot system 100

If we look back at the StateObject definition, we can see how it has a pointer to the first element
of the linked list of records, and each record points to the next one. It also allows to preprend a new
record to the list (making it become the new firstStateRecord).

Another function part of the State0Object definition is the mergeRecords one. If you remember, we
previously mentioned that the system can merge conflicts automatically when possible. That is what
this function is for. The merging strategy is simple and will be covered in detail later.

Let’s inspect StateRecords a bit now.

Snapshot.kt

abstract class StateRecord
internal var snapshotld: Int = currentSnapshot().id // associated with

internal var next: StateRecord? = null // points to the next one

abstract fun assign(value: StateRecord)

abstract fun create(): StateRecord

Here we can see how each record is associated a snpashot ID. That will be the ID of the snapshot in
which the record was created. That is what will determine if the record is valid for a given snapshot
following the requirements described above.

We said that whenever an object is read, the list of StateRecords for a given snapshot state
(StateObject) is traversed, looking for the most recent valid one (with the highest snapshot ID).
The same way, when a snapshot is taken, the most recent valid state of every snapshot state object
is captured, and that will be the state used for all the lifespan of the new snapshot. (Unless it is a
mutable snapshot and the state is mutated locally).

The StateRecord also has functions to assign it a value from another record, and to initially create
it.
StateRecord is also a contract (interface). The different implementations available are defined by

each existing type of StateObject. That is because records store relevant information for the state
object, which differs for each type (per use case).

Following the example of the mutableStateOf, we learned that it returns a SnapshotMutableState,
which is a StateObject. It will maintain a linked list of records of a very specific type:
StateStateRecord. That record is just a wrapper over a value of type T, since that is all the
information we need to store per record in this case.

5. State snapshot system 101

SnapshotMutableState(value: T)

val firstStateRecord

N2

StateStateRecord(value) % StateStateRecord(value’) % StateStateRecord(value”)

mutableStateOf

Another good example can be the case of mutableStatelListOf. It creates a SnapshotStatelist,
which is another implementation of StateObject. This state models a mutable list that can be
observed (implements the MutablelList Kotlin collection contract), so its records will have the type
StatelListStateRecord, defined by itself. This record uses a PersistentList (see Kotlin immutable
collections™) to hold a version of the state list.

SnapshotStateList(persistentListOf())

val firstStateRecord

%

StateListStateRecord(list) % StateListStateRecord(list’) % StateListStateRecord(list™)

mutableStateOf

Reading and writing state

Or in other words, reading and writing state records.

“When an object is read, the list of StateRecords for a given snapshot state (StateOb ject) is traversed,

looking for the most recent valid one (with the highest snapshot ID).” Let’s see how that looks in
code.

°https://github.com/Kotlin/kotlinx.collections.immutable

https://github.com/Kotlin/kotlinx.collections.immutable
https://github.com/Kotlin/kotlinx.collections.immutable
https://github.com/Kotlin/kotlinx.collections.immutable

=~ O O b W N =

W N

© 0O N O O & W N =

I =V
W N s,

5. State snapshot system 102

TextField kt

@Composable
fun TextField(...) {
Y/
var textFieldValueState by remember { mutableStateOf(TextFieldValue(text = value))\
}
/S

This is the TextField composable from the compose.material library. It remembers a mutable state
for the text value, so every time the value is updated the composable recomposes to show the new
character on screen.

Let’s keep the call to remember aside, since it is not relevant for what is worth for this explanation.
Here is the mutableState0Of function used to create the snapshot state:

SnapshotState .kt

fun <T> mutableStateOf(
value: T,

policy: SnapshotMutationPolicy<T> = structuralEqualityPolicy()
): MutableState<T> = createSnapshotMutableState(value, policy)

This ultimately creates a SnapshotMutableState state object that gets the value: T and a
SnapshotMutationPolicy<T> as arguments. It will wrap (store in memory) the value and use the
mutation policy whenever it needs to be updated, to check if the new value passed is different than
the current one or not. Here is how that value property is defined in the class:

SnapshotState.kt

internal open class SnapshotMutableStateImpl<T>(
value: T,
override val policy: SnapshotMutationPolicy<T>
) : StateObject, SnapshotMutableState<T> {

override var value: T
get() = next.readable(this).value
set(value) = next.withCurrent {
if (!policy.equivalent(it.value, value)) {
next.overwritable(this, it) { this.value = value }

private var next: StateStateRecord<T> = StateStateRecord(value)

15
16
17

g b W N =

5. State snapshot system 103

Y/

Whenever we use the getter to access the inner value from our TextField Composable (i.e:
textFieldValueState.value), it will take the reference to the next state record (first one on the
linked list) to start the iteration by calling readable. The readable function does the iteration to find
the current (most fresh) valid readable state for the current snapshot. It also notifies any registered
read observers. For every new item iterated it will check if it’s valid, following the conditions for
valid defined in the previous section. The current snapshot will be the current thread snapshot or
the global snapshot if the current thread is not associated to any.

So that is how snapshot state is read formutableStateOf£. It will be similar for other mutable snapshot
state implementations available like the one returned by mutableStateListOf.

For writing the state, we can look at the property setter. Let’s add it here again:

SnapshotState kt

set(value) = next.withCurrent {
if (!policy.equivalent(it.value, value)) {
next.overwritable(this, it) { this.value = value }

The withCurrent function calls readable under the hood so it can run the provided block passing
the current most fresh valid readable state record to it as a parameter.

After that, it checks if the new value is equivalent to the current one or not using the pro-
vided SnapshotMutationPolicy , and if they are not, it starts the writing process. The function
overwritable does this job.

I am intentionally not diving into deeper implementation details since those might easily vary in
the future, but I'll explain it briefly: It runs the block using a writable state record, and proposes a
candidate record that in this case will be the current most fresh valid one. If it is valid for the current
snapshot it will use it to do the writing, otherwise it will create a new record and prepend it to the
list to make it be the new initial one. The block does the actual modification over it.

Finally, it notifies any registered write observers.

Removing or reusing obsolete records

Multiversion concurrency control introduces an interesting challenge, due to the fact that we can
have multiple versions of the same state stored (records): Removing versions that become obsolete

5. State snapshot system 104

and will never be read. We’'ll explain how Compose solves this problem in a second, but let’s
introduce the concept of “open snapshots” first. It will be handy.

Any new snapshot taken is added to a set of open snapshots, and will be there until it is proactively
closed. While a snapshot stays open, all its state records are considered invalid for other snapshots
(not readable). Closing a snapshot means all its records become automatically valid (readable) to
any new snapshots created.

Once we know this, let’s learn how Compose recycles obsolete records:

1. It tracks the lowest open snapshot. Compose keeps track of a set of open snapshot ids. Those
ids are monotonically generated and constantly increasing.

2. If a record is valid but not visible in the lowest open snapshot, then it can be safely reused as
it will never be selected by any other snapshot.

Reusing obscured records leads to there typically being only 1 or 2 records in a mutable state object,
which improves performance quite a bit. As snapshots are applied the record that is obscured will be
reused for the next snapshot. If a snapshot is disposed before apply then all the records are flagged
as invalid (discarded) meaning they can be reused immediately.

Change propagation

Before explaining how changes in mutable snapshots are propagated, it might be useful to recap on
what “closing” and “advancing” a snapshot means, so we can grasp both terms.

Closing a snapshot effectively removes its ID from the set of open snapshot IDs, and the consequence
of this is that all its state records (records associated with its ID) become visible/readable by any new
snapshots created. That makes closing a snapshot an effective way to propagate state changes.

When closing a snapshot, many times we want to replace it by a new one created right away. That is
called “advancing” a snasphot. The new snapshot created gets a new ID generated by incrementing
the previous one. This ID is then added to the set of open snapshot IDs.

As we have learned, the global snapshot is never applied but always advanced, making all its changes
visible to the new global snapshot created. Mutable snapshots can also be advanced when their
nested snaphots apply their changes.

Now that we understand this well, we are ready to learn how changes in mutable snapshots are
propagated.

When calling snapshot .apply() on a mutable snapshot, all the local changes made to state objects
within its scope are propagated to the parent (in case it is a nested mutable snapshot), or to the global
state.

5. State snapshot system 105

Calling apply and/or dispose delimits the lifespan of the snapshot. A mutable snapshot that is
applied can also be disposed after. However, calling apply after dispose will throw, since those
changes are already discarded.

Per what we have described, to get all the local changes propagated (visible to new snapshots taken),
it should be enough to simply remove the snapshot from the active snapshot set. Whenever a
snapshot is created, a copy of the current open snapshots are passed in as the set of invalid snapshots
(that is, no snapshot that has not already been applied should be visible to the new snapshot). Simply
removing the snapshot id from the set of open snapshots is enough for every new snapshot to treat
the recrods created during this snapshot as valid, and therefore they can be returned when their
corresponding state object is read.

But this should only be done after determining that there are no state collisions (colliding writes),
since those would need to be addressed first.

When snapshots are applied, changes made by the applying snapshot are added together with
changes of other snapshots. A state object has a single linked list of records where all the changes
are aggregated. This opens the door to write collisions, since multiple snaphots might try to apply
changes over the same state objects. When a mutable snapshot wants to apply (notify / propagate)
its local changes, it tries to detect potential write collisions and merge those as possible. Merging
is covered in detail in the next section.

We have two scenarios to cover here:
No pending local changes

If there are no pending local changes in the snapshot:

« The mutable snapshot gets proactively closed (removes it from the set of open snapshot ids,
making all its state records automatically visible/readable by new snapshots taken).

« The global snapshot is “advanced” (same as closed but also replaced by a new global snapshot
created).

« Uses the chance to check if there were any state changes in the global snapshot also, so the
mutable snapshot can notify any potential apply observers about those changes in that case.

With pending local changes:
When there are pending changes:

« Detects collisions and calculates the merged records using an optimistic approach (remember
concurrency control categories). Collisions are tried to be merged automatically or discarded
otherwise.

« For every pending local change it checks if it is different than the current value. If it is not, it
ignores the change and keeps the current value.

5. State snapshot system 106

« If it’s an actual change (different), it checks the already calculated optimistic merges to decide
whether to keep the previous, the current, or the applied record. It can actually create a merge
of all of them.

« In case it had to perform a merge of the records, it’ll create a new record (immutability) and
assign the snapshot id to it (associate it with the mutable snapshot), then prepend it to the
linked list of records, making it effectively be the first one on the list.

In case there’s any failure when applying the changes, it will fallback to the same process done when
there are no pending local changes. That is closing the mutable snapshot to make its records visible
to any new ones, advancing the global snapshot (close and replace it by a new one), so it includes all
the changes in the mutable snapshot just closed, and notifies any apply observers about any global
state changes detected.

For nested mutable snapshots the process varies a bit, since those do not propagate their changes
to the global snapshot but to their parent. For that reason, they add all its modified state objects to
the modified set of the parent. Since all those changes need to be visible by the parent, the nested
mutable snapshot removes its own id from the parent set of invalid snapshots.

Merging write conflicts

To do the merges, the mutable snapshot iterates over its list of modified states (local changes), and
for every change it does the following:

« Obtains the current value (state record) in the parent snapshot or the global state.

« Obtains the previous value before applying the change.

« Obtains the state the object would have after applying the change.

« Tries to automatically merge the three of them. This is delegated into the state object, which
relies on a provided merging policy (see StateObject definition some sections ago).

Truth is none of the available policies in the runtime support proper merging at the moment, so
colliding updates will result in a runtime exception notifying the user about the problem. To avoid
falling into this scenario, Compose guarantees that collisions are not possible by using unique keys
to access state objects (state object remembered in a composable function often have unique access
property). Given mutableStateOf uses a StructuralEqualityPolicy for merges, it compares two
versions of the object via a deep equals (==), so all properties are compared, including the unique
object key, making it impossible for two objects to collide.

Auto merge of conflicting changes was added as a potential optimization that Compose does not
make use of yet, but other libraries could.

A custom SnapshotMutationPolicy can be provided by implementing this interface. An example
(extracted from the Compose docs) can be a policy that treats MutableState<Int> as a counter. This
policy assumes that changing the state value to the same is not considered a change, hence any
changes to a mutable state with a counterPolicy can never cause an apply conflict.

O U kW N

© 00 1 O O b W N =

I = SO =N
B W N s,

5. State snapshot system 107

CounterPolicy .kt

fun counterPolicy(): SnapshotMutationPolicy<Int> = object : SnapshotMutationPolicy<I\
nt> {

override fun equivalent(a: Int, b: Int): Boolean = a == b

override fun merge(previous: Int, current: Int, applied: Int) =

current + (applied - previous)

Two values are considered equivalent when they are the same, and therefore the current value will
be kept. Note how merging is obtained adding the difference between the new applied value and
the previous one, so the current value always reflects the total amount stored.

This paragraph is extracted from the official docs also, as it is very explanatory: As the name of the
policy implies, it can be useful when counting things, such as tracking the amount of a resource
consumed or produced while in a snapshot. For example, if snapshot A produces 10 things and
snapshot B produces 20 things, the result of applying both A and B should be that 30 things were
produced.

CounterPolicy2.kt

val state = mutableStateOf(©@, counterPolicy())
val snapshot1 = Snapshot.takeMutableSnapshot()
val snapshot2 = Snapshot.takeMutableSnapshot()
try {
snapshoti.enter { state.value += 10 }
snapshot2.enter { state.value += 20 }
snapshoti.apply().check()
snapshot2.apply().check()
} finally {
snapshoti .dispose()
snapshot2.dispose()

// State is now 30 as the changes made in the snapshots are added together.

We have a single mutable state using the counter policy for comparison, and a couple of snapshots
that try to modify it and apply the changes. This would be the perfect scenario for collisions, but
given our counter policy, any collisions are completely avoided.

This is only a simple example of how to provide a custom SnapshotMutationPolicy that avoid
conflicts, so we can get the point. Another implementation where collisions wouldn’t be possible
could be one for sets that can only add elements, not remove. Other useful types (such as ropes) can
similarly be turned into conflict-free data-types given certain constraints on how they work and
what the expected result is.

5. State snapshot system 108

We could also provide custom policies that accept collisions but resolve them by merging the data
using the merge function.

6. Smart Recomposition

To be written.

s W N

7. Effects and effect handlers

Before jumping into effect handlers it is probably welcome to recap a bit about what to consider a
side effect. That will give us some context about why it is key to keep side effects under control in
our Composable trees.

Introducing side effects

Side effects were covered in chapter one when learning about the properties of Composable
functions. We learned that side effects make functions non-deterministic, and therefore they make
it hard for developers to reason about code.

In essence, a side effect is anything that escapes the control and scope of a function. Imagine a
function that is expected to add two numbers:

Add .kt

fun add(a: Int, b: Int) = a + b

This is also frequently referred to as a “pure” function, since it only uses its inputs to calculate a
result. That result will never vary for the same input values, since the only thing the function does is
adding them. Therefore we can say this function is determinisitic, and we can easily reason about
it.

Now, let’s consider adding some collateral actions to it:

AddWithSideEffect.kt

fun add(a: Int, b: Int) =
calculationsCache.get(a, b) ?:
(a + b).also { calculationsCache.store(a, b, it) }

We are introducing a calculations cache to save computation time if the result was already computed
before. This cache escapes the control of the function, so nothing tells us whether the value read from
it has not been modified since last execution, for example. Imagine that this cache is getting updated
concurrently from a different thread, and suddenly two sequential calls to get(a, b) for the same
inputs return two different values:

g b W N =

7. Effects and effect handlers 111

AddWithSideEffect2 kt

fun main() {
add(1, 2) // 3
// Another thread calls: cache.store(1, 2, res = 4)
add(1, 2) // 4

The add function returns a different value for the same inputs, hence it is not deterministic anymore.
The same way, imagine that this cache was not in-memory but relied on a database. We could
get exceptions thrown by get and store calls depending on something like currently missing a
connection to the database. Our calls to add could also fail under unexpected scenarios.

As a recap we can say that side effects are unexpected actions happening on the side, out of what
callers would expect from the function, and that can alter its behavior. Side effects make it hard for
developers to reason about code, and also remove testability, opening the door to flakiness.

Different examples of side effects can be writing to or reading from a global variable, accessing a
memory cache, a database, performing a network query, displaying something on screen, reading
from a file... etc.

Side effects in Compose

We learned how we fall into the same issues when side effects are executed within Composable
functions, since that effectively makes the effect escape the control and constraints imposed by the
Composable lifecycle.

Something we have also learned previously is how any Composable can suffer multiple recompo-
sitions. For that reason, running effects directly within a Composable is not a great idea. This is
something we already mentioned in chapter 1 when listing the properties of Composable functions,
one of them being that Composable functions are restartable.

Running effects inside a Composable is too risky since it can potentially compromise the integrity of
our code and our application state. Let me bring back an example we used in chapter 1: A Composable
function that loads its state from network:

© 00 N O O & W N =

.
(N

o N O O b W N =

7. Effects and effect handlers 112

SideEffect kt

@Composable
fun EventsFeed(networkService: EventsNetworkService) ({
val events = networkService.loadAllEvents() // side effect

LazyColumn {
items(events) { event ->
Text(text = event.name)

The effect here will run on every recomposition, which is likely not what we are looking for. The
runtime might require to recompose this Composable many times in a very short period of time.
The result would be lots of concurrent effects without any coordination between them. What we
probably wanted was to run the effect only once on first composition instead, and keep that state
for the complete Composable lifecycle.

Now, let’s imagine that our use case is Android Ul, so we are using compose-ui to build a Composable
tree. Any Android applications contain side effects. Here is an example of what could be a side effect
to keep an external state updated.

SideEffect2.kt

@Composable
fun MyScreen(drawerTouchHandler: TouchHandler) {

val drawerState = rememberDrawerState(DrawerValue.Closed)

drawerTouchHandler .enabled = drawerState.isOpen

/o

This composable describes a screen with a drawer with touch handling support. The drawer state is
initialized as Closed, but might change to Open over time. For every composition and recomposition,
the composable notifies the TouchHandler about the current drawer state to enable touch handling
support only when it’s Open.

Line drawerTouchHandler .enabled = drawerState. isOpen is a side effect. We’re assigning a callback
reference on an external object as a side effect of the composition.

As we have described already, the problem on doing it right in the Composable function body is that
we don’t have any control on when this effect runs, so it’ll run on every composition / recomposition,
and will never get disposed, opening the door to potential leaks.

7. Effects and effect handlers 113

Getting back to the example of a network request, what would happen if, a composable that triggered
a network request as a side effect, leaves the composition before it completes?. We might prefer
cancelling the job at that point, right?

Since side effects are required to write stateful programs, Jetpack Compose offers mechanisms to
run side effects on a lifecycle-aware manner, so one can span a job across recompositions, or get it
automatically cancelled when the Composable leaves the composition. These mechanisms are called
effect handlers.

What we need

Compositions can be offloaded to different threads, executed in parallel, or in different order,
among other runtime execution strategies. That’s a door for diverse potential optimizations the
Compose team wants to keep open, and that is also why we would never want to run our effects
right away during the composition without any sort of control.

Overall, we need mechanisms for making sure that:

« Effects run on the correct composable lifecycle step. Not too early, not too late. Just when the
composable is ready for it.

« Suspended effects run on a conveniently configured runtime (Coroutine and convenient
CoroutineContext).

« Effects that capture references have their chance to dispose those when leaving composition.

« Ongoing suspended effects are cancelled when leaving composition.

« Effects that depend on an input that varies over time are automatically disposed / cancelled
and relaunched every time it varies.

These mechanisms are provided by Jetpack Compose and called Effect handlers X

All the effect handlers shared on this post are available in the latest 1.0.0-beta@2.
Remember Jetpack Compose froze public API surface when entering beta so they will
not change anymore before the 1.0.0 release.

Effect Handlers

Before describing them let me give you a sneak peek on the @Composable lifecycle, since that’ll be
relevant from this point onwards.

Any composable enters the composition when materialized on screen, and finally leaves the
composition when removed from the UI tree. Between both events, effects might run. Some effects
can outlive the composable lifecycle, so you can span an effect across compositions.

This is all we need to know for now, let’s keep moving.

We could divide effect handlers in two categories:

© 00 N O O b W N =

= ==Y
O© 00 N O O b W N »~ O

7. Effects and effect handlers 114

« Non suspended effects: E.g: Run a side effect to initialize a callback when the Composable
enters the composition, dispose it when it leaves.
« Suspended effects: E.g: Load data from network to feed some UI state.

Non suspended effects

DisposableEffect

It represents a side effect of the composition lifecycle.

« Used for non suspended effects that require being disposed.

« Fired the first time (when composable enters composition) and then every time its keys change.

« Requires onDispose callback at the end. It is disposed when the composable leaves the
composition, and also on every recomposition when its keys have changed. In that case, the
effect is disposed and relaunched.

DisposableEffect.kt

@Composable
fun backPressHandler(onBackPressed: () -> Unit, enabled: Boolean = true) {

val dispatcher = LocalOnBackPressedDispatcherOwner.current.onBackPressedDispatcher

val backCallback = remember {
object : OnBackPressedCallback(enabled) ({
override fun handleOnBackPressed() {

onBackPressed()

DisposableEffect(dispatcher) { // dispose/relaunch if dispatcher changes
dispatcher.addCallback(backCallback)
onDispose {
backCallback.remove() // avoid leaks!

Here we have a back press handler that attaches a callback to a dispatcher obtained from a
CompositonLocal (old Ambients). We want to attach the callback when the composable enters the

© 00 N O O b W N =

N
[\

7. Effects and effect handlers 115

composition, and also when the dispatcher varies. To achieve that, we can pass the dispatcher as
the effect handler key. That’ll make sure the effect is disposed and relaunched in that case.

Callback is also disposed when the composable finally leaves the composition.

If you’d want to only run the effect once when entering the composition and dispose it when leaving
you could pass a constant as the key: DisposableEffect(true) or DisposableEffect(Unit).

Note that DisposableE ffect always requires at least one key.

SideEffect

Another side effect of the composition. This one is a bit special since it’s like a “fire on this
composition or forget”. If the composition fails for any reason, it is discarded.

If you are a bit familiar with the internals of the Compose runtime, note that it’s an effect not stored
in the slot table, meaning it does not outlive the composition, and it will not get retried in future
across compositions or anything like that.

« Used for effects that do not require disposing.
« Runs after every single composition / recomposition.
« Useful to publishing updates to external states.

SideEffect.kt

@Composable
fun MyScreen(drawerTouchHandler: TouchHandler) {
val drawerState = rememberDrawerState(DrawerValue.Closed)

SideEffect {
drawerTouchHandler .enabled = drawerState.isOpen

Y/

This is the same snippet we used in the beginning. Here we care about the current state of the drawer,
which might vary at any point in time. In that sense, we need to notify it for every single composition
or recomposition. Also, if the TouchHandler was a singleton living during the complete application
execution because this was our main screen (always visible), we might not want to dispose the
reference at all.

We can understand SideE ffect as an effect handler meant to publish updates to some external state
not managed by the compose State system to keep it always on sync.

N O U s W N

© 00 N O O b W N =

RN
=

7. Effects and effect handlers 116

currentRecomposeScope

This is more an effect itself than an effect handler, but it’s interesting to cover.

As an Android dev you might be familiar with the View system invalidate counterpart, which
essentially enforces a new measuring, layout and drawing passes on your view. It was heavily used
to create frame based animations using the Canvas, for example. So on every drawing tick you’d
invalidate the view and therefore draw again based on some elapsed time.

The currentRecomposeScope is an interface with a single purpose:

RecomposeScope.kt

interface RecomposeScope {
Vet
* Invalidate the corresponding scope, requesting the composer recompose this sc\
ope.
*/

fun invalidate()

So by calling currentRecomposeScope.invalidate() it will invalidate composition locally ¥ en-
forces recomposition.

It can be useful when using a source of truth that is not a compose State snapshot.

MyComposable.kt

interface Presenter {

fun loadUser(after: @Composable () -> Unit): User

@Composable
fun MyComposable(presenter: Presenter) {

val user = presenter.loadUser { currentRecomposeScope.invalidate() } // not a Stat)\
e!

Text("The loaded user: ${user.name}")

Here we have a presenter and we manually invalidate to enforce recomposition when there’s a result,
since we’re not using State in any way. This is obviously a very edgy situation, so you’ll likely prefer
leveraging State and smart recomposition the big majority of the time.

So overall, K Use sparingly! X. Use State for smart recomposition when it varies as possible, since
that’ll make sure to get the most out of the Compose runtime.

© 00 N O O b W N =

N = =N
N O O b W N =~ O

7. Effects and effect handlers 117

For frame based animations Compose provides APIs to suspend and await until the next
rendering frame on the choreographer. Then execution resumes and you can update some
state with the elapsed time or whatever leveraging smart recomposition one more time. I
suggest reading the official animation docs'* for a better understanding.

Suspended effects

rememberCoroutineScope

This call creates a CoroutineScope used to create jobs that can be thought as children of the
composition.

« Used to run suspended effects bound to the composition lifecycle.

« Creates CoroutineScope bound to this composition lifecycle.

« The scope is cancelled when leaving the composition.

« Same scope is returned across compositions, so we can keep submitting more tasks to it and all
ongoing ones will be cancelled when finally leaving.

« Useful to launch jobs in response to user interactions.

« Runs the effect on the applier dispatcher (Usually AndroidUiDispatcher .Main'?) when entering.

rememberCoroutineScope.kt

@Composable
fun SearchScreen() {
val scope = rememberCoroutineScope()
var currentJob by remember { mutableStateOf<Job?>(null) }
var items by remember { mutableStateOf<List<Item>>(emptylList()) }

Column {
Row {
TextField("Start typing to search",
onValueChange = { text ->
currentJob?.cancel()
currentJob = scope.async {
delay(threshold)

items = viewModel.search(query = text)

)

https://developer.android.com/jetpack/compose/animation#targetbasedanimation
*https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/ui/ui/src/androidMain/kotlin/androidx/
compose/ui/platform/AndroidUiDispatcher.android.kt

https://developer.android.com/jetpack/compose/animation#targetbasedanimation
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/AndroidUiDispatcher.android.kt
https://developer.android.com/jetpack/compose/animation#targetbasedanimation
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/AndroidUiDispatcher.android.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/AndroidUiDispatcher.android.kt

18
19
20
21

© 00 N O O b W N =

7. Effects and effect handlers 118

}
Row { ItemsVerticallist(items) }

This is a throttling on the UI side. You might have done this in the past using postDelayed or a
Handler with the View system. Every time a text input changes we want to cancel any previous
ongoing jobs, and post a new one with a delay, so we always enforce a minimum delay between
potential network requests, for example.

The difference with LaunchedEffect is that LaunchedEffect is used for scoping jobs
initiated by the composition, while rememberCoroutineScope is thought for scoping jobs
initiated by a user interaction.

LaunchedEffect

This is the suspending variant for loading the initial state of a Composable, as soon as it enters the
composition.

« Runs the effect when entering the composition.

« Cancels the effect when leaving the composition.

« Cancels and relaunches the effect when key/s change/s.

« Useful to span a job across recompositions.

« Runs the effect on the applier dispatcher (Usually AndroidUiDispatcher .Main'’) when entering.

LaunchedEffect kt

@Composable

fun SpeakerlList(eventId: String) {
var speakers by remember { mutableStateOf<List<Speaker>>(emptyList()) }
LaunchedEffect(eventld) { // cancelled / relaunched when eventlId varies

speakers = viewModel.loadSpeakers(eventld) // suspended effect

ItemsVerticallList(speakers)

Not much to say. The effect runs once when entering then once again every time the key varies,
since our effect depends on its value. It'll get cancelled when leaving the composition.

Remember that it’s also cancelled every time it needs to be relaunched. LaunchedE ffect requires at
least one key.

“https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/ui/ui/src/androidMain/kotlin/androidx/
compose/ui/platform/AndroidUiDispatcher.android.kt

https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/AndroidUiDispatcher.android.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/AndroidUiDispatcher.android.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/AndroidUiDispatcher.android.kt

o N O O b W N =

W N

7. Effects and effect handlers 119

produceState
This is actually syntax sugar built on top of LaunchedE ffect.

« Used when your LaunchedE ffect ends up feeding a State (which is most of the time).
+ Relies on LaunchedE ffect.

produceState kt

@Composable
fun SearchScreen(eventId: String) {
val uiState = produceState(initialValue = emptylList<Speaker>(), eventlId) {
viewModel . loadSpeakers(eventld) // suspended effect

ItemsVerticallList(uiState.value)

You can provide a default value for the state, and also one or multiple keys.

The only gotcha is that producestate allows to not pass any key, and in that case it will call
LaunchedEffect with Unit as the key, making it span across compositions. Keep that in mind
since the API surface does not make it explicit.

Third party library adapters

We frequently need to consume other data types from third party libraries like Observable, Flow, or
LiveData. Jetpack Compose provides adapters for the most frequent third party types, so depending
on the library you’ll need to fetch a different dependency:

Dependencies.kt

implementation "androidx.compose.runtime:runtime:$compose_version" // includes Flow \
adapter
implementation "androidx.compose.runtime:runtime-1livedata:$compose_version"

implementation "androidx.compose.runtime:runtime-rxjava2:$compose_version"

All those adapters end up delegating on the effect handlers. All of them attach an observer using
the third party library apis, and end up mapping every emitted element to an ad hoc MutableState
that is exposed by the adapter function as an immutable State.

Some examples for the different libraries below X

LiveData

© 00 N O O & W N =

= U= U
W N s,

© 00 N O O b W N =

T =V =N
N O O b W N =~ O

7. Effects and effect handlers 120

LiveData.kt

class MyComposableVM : ViewModel() {
private val _user = MutablelLiveData(User("John"))
val user: LiveData<User> = _user

/)

@Composable
fun MyComposable() {
val viewModel = viewModel <MyComposableVM> ()

val user by viewModel.user.observeAsState()

Text("Username: ${user?.name}")

Here' is the actual implementation of observeAsState which relies on DisposableEffect handler.

RxJava2

RxJava2.kt

class MyComposableVM : ViewModel() {
val user: Observable<ViewState> = Observable. just(ViewState.loading)

/S

@Composable
fun MyComposable() {
val viewModel = viewModel <MyComposableVM> ()

val uiState by viewModel .user.subscribeAsState(ViewState.lLoading)

when (uiState) {
ViewState.lLoading -> TODO("Show loading")
ViewState.Error -> TODO("Show Snackbar™)
is ViewState.Content -> TODO("Show content")

"“https://cs.android.com/androidx/platform/tools/dokka- devsite- plugin/+/master:testData/compose/source/androidx/compose/runtime/
livedata/LiveDataAdapter.kt

https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/livedata/LiveDataAdapter.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/livedata/LiveDataAdapter.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/livedata/LiveDataAdapter.kt

© 00 N O O b W N =

T ==
N O O b W N =~ O

7. Effects and effect handlers 121

Here® is the implementation for susbcribeAsState(). Same story KThe same extension is also
available for Flowable.

KotlinX Coroutines Flow

Flow .kt

class MyComposableVM : ViewModel() {
val user: Flow<ViewState> = flowOf(ViewState.lLoading)
Y/

@Composable
fun MyComposable() {
val viewModel = viewModel <MyComposableVM> ()

val uiState by viewModel.user.collectAsState(ViewState.lLoading)

when (uiState) {
ViewState.lLoading -> TODO("Show loading")
ViewState.Error -> TODO("Show Snackbar™)
is ViewState.Content -> TODO("Show content")

Here' is the implementation for collectAsState. This one is a bit different since Flow needs to be
consumed from a suspended context. That is why it relies on produceState instead which delegates
on LaunchedE ffect.

So, as you can see all these adapters rely on the effect handlers explained in this post, and you could
easily write your own following the same pattern, if you have a library to integrate.

https://cs.android.com/androidx/platform/tools/dokka- devsite- plugin/+/master:testData/compose/source/androidx/compose/runtime/
rxjava2/RxJava2Adapter.kt

https://cs.android.com/androidx/platform/tools/dokka- devsite- plugin/+/master:testData/compose/source/androidx/compose/runtime/
SnapshotState.kt

https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/rxjava2/RxJava2Adapter.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/SnapshotState.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/rxjava2/RxJava2Adapter.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/rxjava2/RxJava2Adapter.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/SnapshotState.kt
https://cs.android.com/androidx/platform/tools/dokka-devsite-plugin/+/master:testData/compose/source/androidx/compose/runtime/SnapshotState.kt

8. The Composable lifecycle

To be written.

9. Advanced Compose Runtime use
cases

So far, the book was discussing Compose in the context of Android since it is the angle most
people are coming from. The applications of Compose, however, expand far beyond Android or user
interfaces. This chapter will go through some of those advanced usages with practical examples.

Compose runtime vs Compose Ul

Before jumping to the topic, it is important to put a line between Compose Ul and Compose runtime’.
The Compose Ul is the new UI toolkit for Android, with the tree of LayoutNodes which later draw
their content on the canvas. The Compose runtime provides underlying machinery and many
state/composition-related primitives.

With Compose compiler receiving support for the complete spectrum of Kotlin platforms, it is now
possible to use the runtime for managing Ul or any other tree hierarchies almost everywhere (as
long as it runs Kotlin). Note the “other tree hierarchies” part: almost nothing in Compose runtime
mentions UI (or Android) directly. While the runtime was surely created and optimized to support
that use case, it is still generic enough to build tree structures of any kind. In fact, it is very similar
in this matter to React JS, which primary use was to create UI on the web, but it has found much
broader use in things like synthesizers or 3D renderers'®. Most of the custom renderers reuse core
functionality from React runtime but provide their own building blocks in place of browser DOM.

It is no secret that Compose devs were inspired by React while making the library. Even the first
prototypes - XML directly in Kotlin®had a very similar feel to the HTML-in-JS approach React has.
Unsurprisingly, Compose can do most of the things made with React over the years, but run them
natively with Kotlin multiplatform instead of requiring a JavaScript VM.

*https://twitter.com/AndroidDev/status/1363207926580711430

Even before the Android version of Compose was out of beta, JetBrains already started adopting
Compose for Kotlin multiplatform: at the time of writing, they are working on a JVM version for
desktop and a JS version for browsers. Both of these examples are reusing different parts of Compose:

https://jakewharton.com/a-jetpack-compose-by-any-other-name/
"®https://github.com/chentsulin/awesome-react-renderer

https://jakewharton.com/a-jetpack-compose-by-any-other-name/
https://github.com/chentsulin/awesome-react-renderer
https://twitter.com/AndroidDev/status/1363207926580711430
https://twitter.com/AndroidDev/status/1363207926580711430
https://jakewharton.com/a-jetpack-compose-by-any-other-name/
https://github.com/chentsulin/awesome-react-renderer

9. Advanced Compose Runtime use cases 124

« Compose for Desktop managed to get very close to the Android system, reusing the whole
rendering layer of Compose Ul, thanks to ported Skia wrappers. The event system was also
extended to support mouse/keyboard better.

« Compose for Web went down a path of relying on browser DOM for displaying elements,
reusing only compiler and runtime. The available components are defined on top of HTML/CSS,
resulting in a very different system from Compose UL The runtime and compiler, however, are
used almost the same way, even though the underlying platform is completely different.

Runtime Android UI

Compiler Compose UI

Compose
Desktop

Compose
Web

- Multiplatform modules by JetBrains

Module structure of Compose with multiplatform

The remaining parts of this chapter will go through some examples of leveraging the Compose
runtime to build custom hierarchies for your own needs. The first example of such is from within
Android Ul library, where Compose is used to render vector graphics. After that, we will switch to
Kotlin/JS and create a toy version of the DOM management library with Compose.

Composition of vector graphics

Vector rendering in Compose is implemented through the Painter abstraction, similar to the
Drawable in classic Android system:

O© 00 I O O b W N =

NN
= O

9. Advanced Compose Runtime use cases 125

VectorExample .kt

Image(
painter = rememberVectorPainter { width, height -»
Group(

scaleX 0.75f,

0.75f

scaleY
) |
val pathData = PathData { ... }
Path(pathData = pathData)

The functions inside rememberVectorPainter block (Group and Path in particular) are composables
are well, but a different kind. Instead of creating LayoutNodes as the other composables in Compose
UL, they create elements specific to the vector. Combining them results in a vector tree, which is
later drawn into the canvas.

/ Compose UI

-

"SR
(0]
Ly
o
c

©
J __J

Y
O
(Y]
r+
>

_J

| | — Composition \ ;

(NE— - -

e - - - - - - — - —-—

Compose Ul and VectorPainter composition.

The Group and Path exist in a different composition from the rest of the Ul That composition is
contained within VectorPainter and only allows usage of elements describing a vector image, while

© 00 N O O & W N =

N = =y
© 00 N O O & W N =~ O

9. Advanced Compose Runtime use cases

usual UI composables are forbidden.

The check for vector composables is done during runtime at the moment of writing, so the compiler
will happily skip over if you use Image or Box inside the VectorPainter block. This makes writing
such painters potentially unsafe, but there were rumours of Compose compiler team improving

compile-time safety for cases like this in the future.

126

Most of the rules about states, effects, and everything about runtime discussed in the previous
chapters carry over from the UI composition to the vector one. For example, transition API can be
used to animate changes of the vector image alongside the UI. Check Compose demos for more

details: VectorGraphicsDemo.kt'” and AnimatedVectorGraphicsDemo.kt*.

Building vector image tree

The vector image is created from elements simpler than LayoutNode to better tailor to the require-

ments of vector graphics:

VNode kt

sealed class VNode {
abstract fun DrawScope.draw()

// the root node
internal class VectorComponent : VNode() {

val root = GroupComponent()

override fun DrawScope.draw() {

// set up viewport size and cache drawing

internal class PathComponent : VNode() {
var pathData: List<PathNode>

// more properties

override fun DrawScope.draw() {
// draw path

https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/ui/ui/integration-tests/ui- demos/src/main/

java/androidx/compose/ui/demos/VectorGraphicsDemo.kt

**https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/ui/ui/integration- tests/ui-demos/src/main/

java/androidx/compose/ui/demos/AnimatedVectorGraphicsDemo.kt

https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/integration-tests/ui-demos/src/main/java/androidx/compose/ui/demos/VectorGraphicsDemo.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/integration-tests/ui-demos/src/main/java/androidx/compose/ui/demos/AnimatedVectorGraphicsDemo.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/integration-tests/ui-demos/src/main/java/androidx/compose/ui/demos/VectorGraphicsDemo.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/integration-tests/ui-demos/src/main/java/androidx/compose/ui/demos/VectorGraphicsDemo.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/integration-tests/ui-demos/src/main/java/androidx/compose/ui/demos/AnimatedVectorGraphicsDemo.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/integration-tests/ui-demos/src/main/java/androidx/compose/ui/demos/AnimatedVectorGraphicsDemo.kt

20
21
22
23
24
25
26
27
28
29
30

O© 00 1 O O b W N =

NN
=0

9. Advanced Compose Runtime use cases 127

internal class GroupComponent : VNode() {
private val children = mutablelListOf<VNode> ()

// more properties

override fun DrawScope.draw() {

// draw children with transform

The nodes above define a tree structure similar to the one used in classic vector drawable XMLs.
The tree itself is built from two main types of nodes:

- GroupComponent, which combines children and applies a shared transform to them;

- PathComponent, a leaf node (without children) that draws the pathData.

fun DrawScope.draw() provides a way to draw the content of the nodes and their children. The
signature of this function is the same as in Painter interface which is integrated with the root of
this tree later.

The same VectorPainter is used to show the XML vector drawable resources from the classic
Android system. The XML parser creates a similar structure which is converted to a chain of
Composable calls, resulting in the same implementation for seemingly different kinds of resources.

The tree nodes above are declared as internal, and the only way to create them is through
corresponding @Composable declarations. Those functions are the ones used in the example with
rememberVectorPainter at the start of this section.

VectorComposables.kt

@Composable

fun Group(
scaleX: Float = DefaultScaleX,
scaleY: Float = DefaultScaley,

content: @Composable () -> Unit
)
ComposeNode <GroupComponent, VectorApplier>(
factory = { GroupComponent() 1},
update = {
set(scaleX) { this.scaleX = it }

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

9. Advanced Compose Runtime use cases 128

set(scaleY) { this.scaleY = it }
1
content = content
)
}
@Composable
fun Path(
pathData: List<PathNode>,
) o
ComposeNode <PathComponent, VectorApplier>(
factory = { PathComponent() },
update = {
set(pathData) { this.pathData = it }
}
)
}

ComposeNode calls emit the node into composition, creating tree elements. Outside of that,
@Composable functions don’t need interact with the tree at all. After the initial insertion (when the
node element is created), Compose tracks updates for the defined parameters and incrementally
updates related properties.

« factory parameter defines how the tree node gets created. Here, it is only calling constructors
for corresponding Path or Group components.

« update provides a way to update properties of already created instance incrementally. Inside
the lambda, Compose memoizes the data with helpers

(such as fun <T> Updater.set(value: T) or fun <T> Updater.update(value: T)) which refresh
the tree node properties only when provided value changes to avoid unnecessary invalidations.

« content is the way to add child nodes to their parent. This composable parameter is executed
after the update of the node is finished, and all the nodes that are emitted are then parented
to the current node. ComposeNode also has an overload without the content parameter, which
can be used for leaf nodes, e.g. for Path.

To connect child nodes to the parent, Compose uses Applier, discussed in the previous chapters.
VNodes are combined through the VectorApplier:

9. Advanced Compose Runtime use cases 129

VectorApplier.kt

class VectorApplier(root: VNode) : AbstractApplier<VNode>(root) {

override fun insertTopDown(index: Int, instance: VNode) {
current.asGroup().insertAt(index, instance)

override fun insertBottomUp(index: Int, instance: VNode) {
// Ignored as the tree is built top-down.

override fun remove(index: Int, count: Int) {

current.asGroup().remove(index, count)

override fun move(from: Int, to: Int, count: Int) {
current.asGroup().move(from, to, count)

override fun onClear() {
root.asGroup().let { it.remove(@, it.numChildren) }

// VectorApplier only works with [GroupComponent], as it cannot add
// children to [PathComponent] by design
private fun VNode.asGroup(): GroupComponent {
return when (this) {
is GroupComponent -> this

else -> error("Cannot only insert VNode into Group")

Most of the methods in Applier interface frequently result in list operations (insert/move/remove).
To avoid reimplementing them over and over again, AbstractApplier even provides convenience
extensions for Mutablelist. In the case of VectorApplier, these list operations are implemented
directly in a GroupComponent.

Applier provides two methods of insertion: topDown and bottomUp, with different order of assem-
bling the tree:

« topDown first adds a node to the tree and then adds its children, inserting them one by one;

© 00 N O O & W N =

NN NN N N P R 1 s s Ly
g b W0 N P 0 O 00 N O O b W N »~ O

9. Advanced Compose Runtime use cases 130

« bottomUp creates the node, adds all children, and only then inserts it into the tree.

The underlying reason is performance: some environments have the associated cost of adding
children to the tree (think re-layout when adding a View in the classic Android system). For the
vector use-case, there’s no such performance cost, so the nodes are inserted top-down. See the
Applier documentation?for more information.

*https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/runtime/runtime/src/
commonMain/kotlin/androidx/compose/runtime/Applier.kt;1=67

Integrating vector composition into Compose Ul

With the Applier in place, the vector composition is almost ready for use. The last part is the Painter
integration.

VectorPainter .kt

class VectorPainter internal constructor() : Painter() {

// 1. Called in the context of UI composition
@Composable
internal fun RenderVector(
content: @Composable (...) -> Unit
) |
// 2. The parent context is captured with [rememberCompositionContext]
// to propagate its values, e.g. CompositionlLocals.
val composition = composeVector (
rememberCompositionContext(),
content

// 3. Whenever the UI "forgets" the VectorPainter,
// the vector composition is disposed with [DisposableEffect] below.
DisposableEffect(composition) {
onDispose {
composition.dispose()

private fun composeVector(

https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/runtime/runtime/src/commonMain/kotlin/androidx/compose/runtime/Applier.kt;l=67
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/runtime/runtime/src/commonMain/kotlin/androidx/compose/runtime/Applier.kt;l=67
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/runtime/runtime/src/commonMain/kotlin/androidx/compose/runtime/Applier.kt;l=67

26
27
28
29
30
31
32

© 00 N O O b W N =

T S =Y
O O B W N~

9. Advanced Compose Runtime use cases 131

parent: CompositionContext,
composable: @Composable (...) -> Unit
): Composition {

// See implementation below

The first part of integration is connecting Compose UI composition and the vector image composi-
tion:

1. RenderVector accepts content with composable description of the vector image. The Painter
instance is usually kept the same between recompositions (with remember), but RenderVector
is called on each composition if content has changed.

2. Creating composition always requires a parent context, and here it is taken from the Ul
composition with rememberCompositionContext. It ensures that both are connected to the same
Recomposer and all internal values (e.g. CompositionLocals for density) are propagated to the
vector composition as well.

3. The composition is preserved through updates but should be disposed whenever RenderVector
leaves the scope. DisposableE f fect manages this cleanup similarly to other kinds of subscrip-
tions in Compose.

Finally, the last step is to populate the composition with image content to create a tree of vector
nodes, which is later used to draw vector image on canvas:

VectorPainter kt

class VectorPainter : Painter() {
// The root component for the vector tree
private val vector = VectorComponent()
// 1. Composition with vector elements.

private var composition: Composition? = null

@Composable
internal fun RenderVector (

content: @Composable (...) -> Unit

) |

// See full implementation above

private fun composeVector(
parent: CompositionContext,

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

9. Advanced Compose Runtime use cases 132

composable: @Composable (...) -> Unit
): Composition {
// 2. Creates composition or reuses an existing one
val composition =
if (this.composition == null || this.composition.isDisposed) ({
Composition(
VectorApplier(vector.root),
parent
)
} else {
this.composition

}

this.composition = composition

// 3. Sets the vector content to the updated composable value
composition.setContent {
// Vector composables can be called inside this block only

composable(vector.viewportWidth, vector.viewportHeight)

return composition

// Painter interface integration, is called every time the system
// needs to draw the vector image on screen
override fun DrawScope.onDraw() {
with(vector) {
draw()

1. The painter maintains its own composition, because ComposeNode requires the applier to match
whatever is passed to the composition and UI context uses applier incompatible with vector
nodes.

2. This composition is refreshed if the painter was not initialized or its composition went out of
scope.

3. After creating the composition, it is populated through setContent, similar to the one used
inside the ComposeView. Whenever RenderVector is called with different content, setContent
is executed again to refresh vector structure. The content adds children to the root node that
is later used for drawing contents of Painter.

With that, the integration is finished, and the VectorPainter can now draw @Composable contents

=~ O U s W N

9. Advanced Compose Runtime use cases 133

on the screen. The composables inside the painter also have access to the state and composition
locals from the UI composition to drive their own updates.

With that, you know how to create a custom tree and embed it into the already existing composition.
In the next part, we will go through creating a standalone Compose system based on the same
principles... in Kotlin/JS.

Managing DOM with Compose

Multiplatform support is still a new thing for Compose with only runtime and compiler available
outside of the JVM ecosystem. These two modules, however, is all we need to create a composition
and run something in it, which leads to more experiments!

Compose compiler from Google dependencies supports all Kotlin platforms, but runtime is dis-
tributed for Android only. Jetbrains, however, publish their own (mostly unchanged) version of
Compose® with multiplatform artifacts for JS as well.

*https://github.com/JetBrains/compose-jb/releases

The first step to make Compose magic happen is to figure out the tree it should operate on.
Thankfully, browsers already have the “view” system in place based on HTML/CSS. We can
manipulate these elements from JS through DOM (Document Object Model*') API, which is also
provided by Kotlin/JS standard library.

Before starting with JS, let’s look at HTML representation inside the browser.

sample.html

<div>

Item 1</1i>
Item 2</1i>
Item 3</1i>

</div>

The HTML above displays an unordered (bulleted) list with three items. From the perspective of the
browser, this structure looks like this:

**https://developer.mozilla.org/en-US/docs/Web/APl/Document_Object_Model/Introduction

https://github.com/JetBrains/compose-jb/releases
https://github.com/JetBrains/compose-jb/releases
https://github.com/JetBrains/compose-jb/releases
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

9. Advanced Compose Runtime use cases

134

<div>

W

 }j
[
-

(‘

\ .
! 1
o —
"Ttem 1" L_"Item 2" "Item 3"

HTML tree representation in the browser

The DOM is a tree-like structure built from elements which are exposed in Kotlin/JS as
org.w3c.dom.Node. The relevant elements for us are:

« HTML elements (subclasses of org.w3c.dom.HTMLElement) are representing the tags (e.g. 1i

or div). They can be created with document.createElement(<tagName>) and browser will
automatically find correct implementation for a tag,

« Text between the tags (e.g. "Test" in the examples above) represented as a org.w3c.dom. Text.
Instances of this element can be created with document . createTextElement(<value>)

Using these DOM elements, JS sees this tree the following way:

© 00 N O O b W N =

T =V =N
N O O b W N =~ O

9. Advanced Compose Runtime use cases

/////,-————{iHTMLULElement

HTMLLIElement]

-
Text]

\.
"Ttem 1" J

_

HTMLDivElement

[iHTMLLIElement

J
~)\

Text
|
r A
"Ttem 2"

\ J

HTML tree representation for JS

135
HTMLLIElement
_
I
e N
Text
_
|
4 N\
"Ttem 3"
_ J

These elements will provide the basis for the Compose-managed tree, similarly to how VNodes are
used for vector image composition in the previous part.

HtmlTags kt

@Composable

fun Tag(tag: String, content: @Composable () -> Unit) {
ComposeNode<HTMLElement, DomApplier>(

factory = { document.createElement(tag) as HTMLElement },

update = {},
content = content
)
}
@Composable

fun Text(value: String) {

ReusableComposeNode<Text, DomApplier>(

factory = { document.createTextElement("") },

update = {

set(value) { this.data = it }

}
)

18

9. Advanced Compose Runtime use cases 136

Tags cannot be changed in place, as the <audio> has a completely different browser representation
from <div>, so if the tag name has changed, it should be recreated. Compose does not handle this

automatically, so it is important to avoid passing different values for tag names into the same
composable.

The simplest way to achieve recreation of the nodes is to wrap each node in a separate composable
(e.g. Div and U1 for corresponding elements). By doing so, you create different compile-time groups
for each of them, hinting to Compose that those elements should be replaced completely instead of
just updating their properties.

Text elements, however, are structurally the same, and we indicate it with ReusableComposeNode.
This way, even when Compose finds these nodes inside different groups, it will reuse the instance.
To ensure correctness, the text node is created without content, and the value is set with update
parameter.

To combine elements into a tree, Compose requires an Applier instance operating on DOM elements.
The logic for it is very similar to the VectorApplier above, except the DOM node methods for
adding/removing children are slightly different. Most of the code there is completely mechanical
(moving elements to correct indices), so I will omit it here. If you are looking for a reference, I
recommend checking Applier used in Compose for Web?*.

Standalone composition in the browser

To start combining our new composables into UI, Compose requires an active composition. In Com-
pose UI, all the initialization is already done in the ComposeView, but for the browser environment
it needs to be created from scratch.

The same principles can be applied for the different platforms as well, as all the components
described below exist in the “common” Kotlin code.

*https://github.com/JetBrains/compose- jb/blob/6d97¢c6d0555f056d2616f417c4d 130e0c2147e32/web/core/src/jsMain/kotlin/org/jetbrains/
compose/web/DomApplier kt#L63-L91

https://github.com/JetBrains/compose-jb/blob/6d97c6d0555f056d2616f417c4d130e0c2147e32/web/core/src/jsMain/kotlin/org/jetbrains/compose/web/DomApplier.kt#L63-L91
https://github.com/JetBrains/compose-jb/blob/6d97c6d0555f056d2616f417c4d130e0c2147e32/web/core/src/jsMain/kotlin/org/jetbrains/compose/web/DomApplier.kt#L63-L91
https://github.com/JetBrains/compose-jb/blob/6d97c6d0555f056d2616f417c4d130e0c2147e32/web/core/src/jsMain/kotlin/org/jetbrains/compose/web/DomApplier.kt#L63-L91

9. Advanced Compose Runtime use cases

renderComposable.kt

137

fun renderComposable(root: HTMLElement, content: @Composable () -> Unit) {
GlobalSnhapshotManager .ensureStarted()

val recomposerContext = DefaultMonotonicFrameClock + Dispatchers.Main

val recomposer = Recomposer (recomposerContext)
val composition = ControlledComposition(
applier = DomApplier(root),
parent = recomposer

composition.setContent(content)

CoroutineScope(recomposerContext) . launch(start = UNDISPATCHED) ({
recomposer . runRecomposeAndApplyChanges()

renderComposable hides all the implementation details of composition start, providing a way to
render composable elements into a DOM element. Most of the setup inside is connected to initializing

Recomposer with correct clock and coroutine context:

« First, the snapshot system (responsible for state updates) is initialized. GlobalSnapshotManager

is intentionally left out of runtime, and you can copy it from Android source® if the target
platform doesn’t have one provided. It is the only part that is not provided by the runtime at
the moment.

Next, the coroutine context for Recomposer is created with JS defaults. The default
MonotonicClock for browsers is controlled with requestAnimationFrame (if you are using
JetBrains implementation), and Dispatchers.Main references the only thread JS operates on.
This context is used to run recompositions later.

Now we are ready to create a composition. It is created the same way as in the vector example
above, but now the recomposer is used as a composition parent (recomposer always has to be
a parent of the top-most composition).

Afterwards, composition content is set. All the updates to this composition should happen
inside provided composable, as new invocations of renderComposable will recreate everything
from scratch.

The last part is to start the process of recompositions by launching a coroutine with
Recomposer . runRecomposeAndApplyChanges. On Android, this process is usually tied to the
activity/view lifecycle, with calling recomposer .cancel() to stop the recomposition process.

*https://cs.android.com/androidx/platform/frameworks/support/+/androidx- main:compose/ui/ui/src/androidMain/kotlin/androidx/
compose/ui/platform/GlobalSnapshotManager.android.kt

https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/GlobalSnapshotManager.android.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/GlobalSnapshotManager.android.kt
https://cs.android.com/androidx/platform/frameworks/support/+/androidx-main:compose/ui/ui/src/androidMain/kotlin/androidx/compose/ui/platform/GlobalSnapshotManager.android.kt

0 N O O b W N =

© 00 N O O b W N =

10
11
12
13
14
15

9. Advanced Compose Runtime use cases 138

Here, the composition lifecycle is tied to the lifetime of the page, so no cancellations are
needed.

Primitives above can now be combined together to render content of a HTML page:

HtmlSample1.kt

fun main() {
renderComposable(document.body!!) {
// equivalent of <button>Click me!</button>
Tag("button") {
Text("Click me!")

Creating static content, however, can be achieved by much easier means, and Compose was required
in the first place to achieve interactivity. In most cases, we expect something to happen when the
button is clicked, and in DOM it can be achieved with, similar to Android views, click listeners.

In Compose UL, many listeners are defined through Modi fier extensions, but their implementation
is specific to LayoutNode, thus, not usable for this toy web library. It is possible to copy Modifier
behavior from Compose Ul and adjust nodes used here to provide better integration with event
listeners through modifiers, but it is left as an exercise to the reader.

HtmlTags kt

@Composable
fun Tag(
tag: String,
// this callback is invoked on click events
onClick: () -> Unit = {},
content: @Composable () -> Unit
) |
ComposeNode<HTMLElement, DomApplier>(
factory = { createTagElement(tag) },
update = {
// when listener changes, the listener on the DOM node is re-set
set(onClick) {
this.onclick = { _ -> onClick() }

16
17
18

© 00 N O O b W N =

I = U = U
W N s,

9. Advanced Compose Runtime use cases 139

content = content

Each tag can now define a click listener as a lambda parameter which is propagated to a DOM node
with handy onclick property defined for all HTMLE1ements. With that addition, clicks can now be
handled by passing onClick parameter to the Tag composable.

HtmlSampleCounter.kt

fun main() {
renderComposable(document.body!!) {
// Counter state is updated on click
var counterState by remember { mutableStateOf(0) }

Tag("h1") {

Text("Counter value: $counterState")

Tag("button", onClick = { counterState++ }) {

Text("Increment!")

From here, there are multiple ways to expand this toy library, adding support for CSS, more events,
and elements. JetBrains team is currently experimenting on a more advanced version of Compose
for Web. It is built on the same principles as the toy version we explored in this chapter but is more
advanced in many ways to support a variety of things you can build on the web. You can try the
tech demo* yourself with Kotlin/JS projects to learn more.

Conclusion

In this chapter, we explored how core Compose concepts can be used to built systems outside of
Compose UL Custom compositions are harder to meet in the wild, but they are a great tool to have
in your belt if you are already working in Kotlin/Compose environment.

The vector graphics composition is a good example of integrating custom composable trees into
Compose UL The same principles can be used to create other custom elements which can easily
interact with states/animations/composition locals from UI composition.

**https://compose-web.ui.pages.jetbrains.team/

https://compose-web.ui.pages.jetbrains.team/
https://compose-web.ui.pages.jetbrains.team/
https://compose-web.ui.pages.jetbrains.team/

9. Advanced Compose Runtime use cases 140

It is also possible to create standalone compositions on all Kotlin platforms! We explored that by
making a toy version of the DOM management library based on Compose runtime in a browser
through the power of Kotlin/JS. In a similar fashion, Compose runtime is already used to manipulate
Ul trees in some projects outside of Android (see Mosaic*’, Jake Wharton’s take on CLI).

[encourage you to experiment on your own ideas with Compose, and provide feedback to Compose
team in #compose Kotlin slack channel! Their primary goal is still defined by Compose UL but they
are very excited to learn more about other things Compose is used for.

*https://github.com/JakeWharton/mosaic

https://github.com/JakeWharton/mosaic
https://github.com/JakeWharton/mosaic

	Table of Contents
	Prelude
	Why to read this book
	What this book is not about
	What this book is about
	Keep the sources close
	Code snippets and examples

	1. Composable functions
	The nature of Composable functions
	Composable function properties
	Calling context
	Idempotent
	Free of side effects
	Restartable
	Fast execution
	Positional memoization
	Similarities with suspend functions
	Composable functions are colored
	Composable function types

	2. The Compose compiler
	A Kotlin compiler plugin
	Compose annotations
	Registering Compiler extensions
	Kotlin Compiler version
	Static analysis
	Static Checkers
	Call checks
	Type checks
	Declaration checks
	Diagnostic suppression
	Runtime version check
	Code generation
	The Kotlin IR
	Lowering
	Inferring class stability
	Enabling live literals
	Compose lambda memoization
	Injecting the Composer
	Comparison propagation
	Default parameters
	Control flow group generation
	Klib and decoy generation

	3. The Compose runtime
	The slot table and the list of changes
	The slot table in depth
	The list of changes
	The Composer
	Feeding the Composer
	Modeling the Changes
	Optimizing when to write
	Writing and reading groups
	Remembering values
	Recompose scopes
	SideEffects in the Composer
	Storing CompositionLocals
	Storing source information
	Linking Compositions via CompositionContext
	Accessing the current State snapshot
	Navigating the nodes
	Keeping reader and writer in sync
	Applying the changes
	Performance when building the node tree
	How changes are applied
	Attaching and drawing the nodes
	Composition
	Creating a Composition
	The initial Composition process
	Applying changes after initial Composition
	Additional information about the Composition
	The Recomposer
	Spawning the Recomposer
	Recomposition process
	Concurrent recomposition
	Recomposer states

	4. Compose UI
	5. State snapshot system
	What snapshot state is
	Concurrency control systems
	Multiversion concurrency control (MCC or MVCC)
	The Snapshot
	The snapshot tree
	Snapshots and threading
	Observing reads and writes
	MutableSnapshots
	GlobalSnapshot and nested snapshots
	StateObjects and StateRecords
	Reading and writing state
	Removing or reusing obsolete records
	Change propagation
	Merging write conflicts

	6. Smart Recomposition
	7. Effects and effect handlers
	Introducing side effects
	Side effects in Compose
	What we need
	Effect Handlers
	Non suspended effects
	Suspended effects
	Third party library adapters

	8. The Composable lifecycle
	9. Advanced Compose Runtime use cases
	Compose runtime vs Compose UI
	Composition of vector graphics
	Building vector image tree
	Integrating vector composition into Compose UI
	Managing DOM with Compose
	Standalone composition in the browser
	Conclusion

